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Estuaries are valuable ecosystems that are easily affected by human activities 

within the watershed. One determinant of water quality for in an estuary is the presence 

of suspended sediments. The use of satellite sensors to remotely sense visible and near-

infrared reflectance allows for suspended particulate matter (SPM) and suspended 

particulate inorganic matter (SPIM) concentrations to be monitored on a repetitive 

synoptic scale. Previously presented algorithms for relating remote sensing reflectance 

(Rrs) and SPM/SPIM concentrations were evaluated for the Weeks Bay estuary in 

Alabama. Additionally, numerous potential SPM/SPIM concentration retrieval 

algorithms using the Landsat-8 satellite were determined through regression analysis, as 

well as through the consideration of the inherent optical properties of the water body. The 

most robust empirical algorithm produced an RMSE of 12.50% and utilized the band 

combination of Ln(Band4)/Ln(Band3), while the most robust semi-analytical algorithm 

produced an RMSE of 16.34% and utilized the band combination of Band4/Band3.  
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Estuaries are partially enclosed bodies of brackish water that are critical habitats 

for a significant variety of wildlife. They are one of the most productive types of 

ecosystems and serve not only as valuable ecological habitats, but also possess significant 

economic and cultural value (Potter, n.d.). Estuaries are used for transport, commercial 

industry, recreation, and research resulting in many of the watersheds surrounding 

estuaries to have widely differing land use types, including a large percentage of land 

used for urban and agricultural purposes. An understanding of suspended particulate 

concentration and transport in coastal waters is vital when studying carbon and nitrogen 

biochemistry (Kumar et al., 2011; Bhavya et al., 2016), as well the transport of various 

toxic metals and pollutants such as polycyclic aromatic hydrocarbons (Booth et al., 2000; 

Gregg et al., 2015; Ma et al., 2015). Furthermore, an understanding of seasonal 

suspended particulate concentrations is important for determining sediment budgets 

(Chalov et al., 2014). Suspended sediments may be used as a determinant of estuarine 

health (EPA, 2000). Although there are no quantitative criteria for acceptable levels for 

SSCs, the National Academy of Sciences recommends that the concentration of total 

suspended solids should not be allowed to reduce light penetration by more than 10% 
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(Kentucky Water Watch, n.d.). There is still much to be understood concerning the 

transport of suspended sediments, thus warranting a method of constant SSC monitoring  

1.2 Weeks Bay Overview 

Modeling suspended particulate matter in a small estuary could help with our 

understanding sediment transport by providing a more controlled environment.  The 

Weeks Bay estuary on the eastern shore of Mobile Bay in Alabama is an ideal setting to 

investigate this. Weeks Bay has been established as an active research environment, and 

possess a watershed that is completely within the confines of a single county. 

In 1986, Weeks Bay became the 16th site of the NERRS and was renamed as the 

Weeks Bay National Estuarine Research Reserve. Weeks Bay is located in Baldwin 

County, Alabama, approximately 30 miles southeast of the city of Mobile. Baldwin 

County is one of the fastest growing counties in Alabama due an increase in the 

suburbanization of Mobile (‘State by State’). Weeks Bay is fed by the Fish and Magnolia 

Rivers, such that its 200 square mile watershed completely lies within the boundaries of 

Baldwin County. From 1990 to 2000, the Weeks Bay watershed experienced an increase 

in urban/built-up land cover by 92.47% (Cartwright, 2002).  Changes in land use/land 

cover (LULC) within the watershed can have significant effects on the runoff of 

sediment, nutrients, and freshwater volume that enters the estuary (Estes et al., 2015). A 

higher percentage of urban land cover, and therefore impervious surfaces, increases 

surface runoff and allows for accumulated sediment and pollutants to be directed into 

surface water sources (Basnyat et al., 1999). It is therefore important to monitor changes 

in water quality and sediment concentrations in order to assess the impact this 

urbanization is having on the bay. Weeks Bay provides the necessary habitat for an 
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abundant variety of wildlife including plankton, nekton, amphibian, reptile, mammal, and 

bird species (Miller-Way et al., 1996). The health of these species depends largely on the 

water quality of the bay and tributary rivers. 

1.3 Suspended Particulate Matter (SPM) 

A primary concern in the Weeks Bay estuary is the threat of increased sediment 

transport within the watershed due to a rapid increase in development. Suspended 

particulate matter (SPM) includes all material transported through suspension in flowing 

water. This includes both the organic (SPOM) and inorganic (SPIM) components. This 

study will focus on the optically active constituents (OACs) present in the water body 

including inorganic suspended sediments (non-algal particulates, or NAP), chlorophyll a 

(Chl a), color dissolved organic matter (CDOM), and phycocyanin (PC) that will affect 

the optical properties of the water. For the purpose of this study, SPM will be defined as 

the organic and inorganic filterable quantity of the OACs, including phytoplankton (Chl a 

and PC) and mineral particulates (NAP) (Gohin, 2011; Merrit, 2016). SPIM will be 

defined as only the inorganic filterable quantity of the OACs present in the water body, 

and may also be referred to as the suspended sediment concentration (SSC). These 

materials, as well as non-optically active constituents, will be transported with runoff 

from the watershed into the water body during precipitation events. Furthermore, in 

addition to being transported through runoff, SPM may be transported into the estuary 

through variations in currents and tidal influences from the mouth of the bay. Moreover, 

currents and wind-induced waves may suspend bottom sediment in shallow coastal 

environments (Booth et al., 2000).  
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1.4 Remote Sensing of SPM 

Previously, to determine the SPM concentrations within a body of water, it was 

necessary to collect in situ water samples to be filtered for suspended particulates. 

Repetitive sampling was required to establish a time series of SPM concentrations. In situ 

data collection is not only time consuming and expensive, but is also limited in spatial 

and temporal scales. For studies of features that vary substantially temporally and 

spatially such as those on material transport, in situ measurements are limited in the 

functionality and understanding they may provide (Booth et al., 2000). With the advance 

in remote sensing technology, it is possible to study suspended particles remotely, and on 

a wider scale. Many studies have demonstrated the effectiveness of using combinations 

of various band reflectance data to observe suspended sediment (Chen et al., 2011; Han et 

al., 2006; Kaba et al., 2014; Miller et al., 2004; Zhao et al., 2011). Several sensors such as 

the Moderate Resolution Imagery Spectroradiometer (MODIS) and Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS) were designed specifically for ocean color studies, but 

with relatively coarse spatial resolutions (250 m to 1 km), they are unsuitable for small 

inland and coastal water studies. The Landsat satellites, while designed for land surface 

studies, have often been selected to study suspended sediment in smaller bodies of water 

due to the superior spatial resolution of 30 meters for bands 1-5 and 7 (Jenson, 2006). In 

order to accurately assess SPM and SPIM concentrations using remotely sensed imagery, 

site specific algorithms must be developed and applied to atmospherically corrected 

satellite imagery. With its high spatial resolution, Landsat may be used to develop an 

algorithm in order to assess SPM concentrations in Weeks Bay. 
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1.5 Hypothesis and Objectives 

While numerous studies have developed predictive models for the remote sensing 

of SPM/SPIM concentrations in estuaries in the Gulf of Mexico and around the world, 

none have been attempted for the Weeks Bay Estuary in Alabama. Because the Landsat 

satellites have the potential to quantify SPM/SPIM, and Weeks Bay is a sensitive estuary 

undergoing rapid development of its watershed, the primary objective of this study was to 

develop a site-specific algorithm correlating in situ observations of SPM and SPIM with 

observations of reflectance from the Landsat-8 satellite sensor. Additionally, a semi-

analytical simulation was implemented to confirm the influence of the various OACs 

present in the water body. This research will help us to better understand SPM/SPIM and 

to provide a low cost methodology for quantifying SPM and SPIM concentrations. This 

will improve our overall understanding of SPM/SPIM in Weeks Bay and by extension, all 

similar estuarine environments. It is hypothesized that a relationship exists between in 

situ observed SPM concentrations of Weeks Bay and corresponding radiometer data 

simulated to represent the Rrs values observed by the Landsat-8 satellite. The specific 

objectives of this study are as follows:  

1) To model in situ observed SPM and SPIM concentrations within Weeks Bay 

with corresponding radiometer data simulated to represent the Rrs values 

observed by the Landsat-8 satellite. The creation of an algorithm for the 

retrieval of SPM and SPIM concentrations will provide a low cost 

methodology for future SPM and SPIM research. 

2) To examine the individual spectral contributions of OACs including NAP, Chl 

a, CDOM, and PC. This assessment will allow an improved understanding of 
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the OACs that comprise both SPM and SPIM and their contribution to total 

Rrs. 

1.6 Significance 

Estuaries are important ecosystems that provide environmental, commercial, 

recreational, and cultural benefits (NOAA, 2005). Estuaries are vital habitats for a variety 

of wildlife, serving as buffers to protect inland regions from storms and flooding, and 

regulating water quality (Needles et al., 2015). Not only are estuaries important 

environmentally, they are also vital to the economy. Weeks Bay in particular is home to 

numerous species with a commercial importance to the region. The estuary serves as a 

nursery for all three southeastern species of commercial shrimps (Miller-Way et al., 

1996). Weeks Bay is also home to blue crabs, as well as numerous species of finfish 

including sheepshead, white trout, mullet, speckled trout, redfish, and flounder (Miller-

Way et al., 1996). Between 2001 and 2006, 46% by weight and 68% by economic value 

of the commercially harvested fish and shellfish in the United States were species that 

rely on estuaries during some stage of their life cycle. These percentages increase to 97% 

by weight and 93% by economic value when specifically evaluating the Gulf of Mexico 

region (Lellis-Dibble et al., 2008). Many estuaries are located in close proximity to 

growing urban populations (Hu et al., 2004). The Weeks Bay National Estuarine 

Research Research (NERR) is located in proximity to the growing suburbs of Mobile, 

Alabama. The growth of these suburbs have altered the nature of the Weeks Bay 

watershed.  

The model derived from this study can be used as a tool for future studies used to 

monitor the health of the Weeks Bay ecosystem. As a NERR location, Weeks Bay is a 
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common study area for research. With the use of this model, it will be possible for 

researchers to investigate the influence of human activities such as agriculture and new 

development on SPM concentrations. The model may be applied to historical images 

over a longer time frame in order to assess changes in water quality. 
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CHAPTER II 

BACKGROUND 

2.1 Water Quality Parameters 

The U.S. Environmental Protection Agency (EPA) has identified certain 

parameters that may directly relate to and impair the health of an ecosystem, and refers to 

them as “stressors” (EPA, 2000; Hu et al., 2004). Common stressors for estuarine 

ecosystems include increased nutrient concentrations, low dissolved oxygen, sustained 

algal blooms, and sediment contamination (EPA, 2000). Suspended sediments are the 

most common contaminant in both weight and volume for freshwater systems (Ritchie & 

Cooper, 2001). A single liter of water from a turbid estuary may contain several million 

particles that are large enough to be caught on a filter (47 mm pore size), but too small 

for the un-aided eye to see (Bowers & Binding, 2006). Excess nutrients and sediment 

have been found to be the most common stressor for seagrass, a sentinel species for the 

overall health of an ecosystem (Orth et al., 2006). Submerged aquatic vegetation is 

indirectly affected by suspended sediment concentrations due to the obstruction of 

sunlight essential to photosynthesis. The majority of seagrass loss is the result of human 

activities within the watershed that lead to an increase in the amount of sediment and 

nutrient runoff (Orth et al., 2006). Seagrass provides a vital habitat and food source for 

various aquatic organisms (Coll et al., 2011).  
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Not only do suspended sediments block sunlight from reaching underwater 

vegetation, they also serve as a proxy for other contaminants that may bind to sediment 

particles such as phosphorus, insecticides, and metals (Ritchie & Cooper, 2001).  SPM 

has been associated with quantities of nutrients, toxins, harmful algae, pathogens, and 

bacteria, making SPM concentrations an important aspect of water quality of monitor 

(Merritt, 2016). Lastly, suspended sediments may clog the gills of fish and other aquatic 

organisms (Hill, 1997). Significant increases in the concentrations of total suspended 

solids may result in a significant decrease the population of macroinvertebrates 

(Kentucky Water Watch, n.d.). Weeks Bay receives high concentrations of suspended 

sediment during major runoff events from the Fish River, as well as from tidal inputs 

from Mobile Bay and resuspension of sediment during periods of strong winds, which 

together result in a relatively turbid water column (Miller-Way et al., 1996).  

2.2 Optically Active Constituents (OACs) 

Because the objective of this study is to develop a method of remotely sensing 

SPM, it will focus on the optically active constituents (OACs) present in the water that 

contribute to the bio-optical properties of the water. Water bodies vary in the type and 

concentrations of OACs present within them. Morel and Prieur (1977) identified two 

extreme types of waters that they separated into “Case-1” and “Case-2” waters. Case-1 

waters contain a high concentration of phytoplankton compared to the other OACs, 

whereas inorganic particles are dominant in Case-2 waters (Morel and Prieur, 1977). 

Although ideal Case-1 (pure phytoplankton) and Case-2 waters (pure nonliving material)  

do not exist in nature, we still use these classifications to describe the difference between 

clear open ocean water and more complex coastal and inland waters.  
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Satellite data may be used to determine chlorophyll concentrations in clear Case-1 

waters, however Case-2 waters contain a more complex signal due to the presence of 

terrestrial substances in addition to phytoplankton (Doxaran et al., 2002). These natural 

coastal waters are heterogeneous, with highly variable concentrations of dissolved and 

particulate matter (Mobley, 2010). Some degree of correlation between sediments, chl-a, 

and CDOM is often observed (Tassan, 1994). Processes that effect one component will 

affect the other components as well (Merritt, 2016). In this study, SPM will be defined as 

the filterable quantity of OACs including both inorganic and organic matter. SPIM will 

be defined as the inorganic filterable quantity of OACs, and may also be referred to as the 

suspended sediment concentration (SSC). SPIM inhibits primary production in coastal 

waters (Doxaran et al., 2002). Chl-a is an algal pigment found in all phytoplankton and 

may be an indicator of biomass and therefore used to predict total algal concentrations 

(Hu et al., 2004; Dash et al., 2011). Chl-a concentration and absorption are key variables 

for determining primary production (Nieke et al., 1997). Terrestrial dissolved organic 

matter (DOM) serves as a carbon source for bacteria (Kutser et al., 2005). In Case-2 

waters, humic and fulvic acids account for 70% of the DOM and contribute significantly 

to light absorption and fluorescence, particularly in the short-wavelength region of solar 

radiation (Nieke et al., 1997; Kutser et el., 2005). The portion of DOM that absorbs light 

is referred to as CDOM and effects the light available for primary producers (Nieke et al., 

1997; Kutser et al., 2005). CDOM is derived from the decay of phytoplankton, as well as 

from terrestrial sources of plant decay (Nieke et al., 1997; Merritt, 2016).   
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2.3 Apparent and Inherent Optical Properties 

The remote sensing of water presents different challenges than terrestrial remote 

sensing due to the different OACs present within the water body, as well as the increased 

sensitivity to atmospheric noise. When light interacts with a medium, it may be absorbed, 

scattered, or emitted. The optical properties of water may be divided into apparent and 

inherent optical property (AOP and IOP, respectively) measurements (Doxaran et al., 

2006). IOPs are properties of the medium itself, and do not depend on the incident light 

(Mobley, 2010). This includes the absorption and backscattering properties of the water 

and other optically active components. Absorption, as expressed by the absorption 

coefficient, is the distance into a material that light of a certain wavelength may permeate 

before being absorbed and having its energy converted into a nonradiant form (Mobley, 

2010). Backscattering, as expressed by the backscattering coefficient, is the quantitative 

measure of the energy returned to the sensor from the terrain, or in this study, water body 

(Jenson, 2006). 

IOPs vary by orders of magnitude depending on the composition, morphology, 

and concentration of particulate and dissolved material in the water (Mobley, 2010). 

Absorption (a) and backscattering (bb) coefficients may be determined for all OACs 

including water, CDOM, Chl-a, and SPIM (Dash et al., 2011). AOPs describe the bulk 

optical properties of water that depend on both the medium and on the direction of the 

radiance distribution (Mobley, 2010).  AOPs include the upwelling (Eu) and down 

welling (Ed) irradiances. Eu and Ed are the amount of radiant flux incident upon a surface 

per unit area that is emitted upwards and downwards, respectively (Jenson, 2006).  
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Historically, it was easier to measure radiometric variables, and therefore the 

AOPs than it was to determine the IOPs (Mobley, 2010). IOPs may now be determined 

easily in either the field or lab through the use of spectrophotometry, therefore, the 

absorption and backscattering coefficients will be used in this study. By using a 

spectrophotometer, it is possible to determine the absorption coefficient at each 

wavelength for SPM, as well as for the SPIM and SPOM components by removing 

organic material from the filtered sample using methanol and once again using a 

spectrophotometer. 

Through AOPs, remote sensing reflectance (Rrs) may be determined by the 

following equation: 

 𝑅𝑟𝑠 =
𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒
 (2.1) 

Similarly, through IOPs, Rrs may be determined by the following equation: 

 𝑅𝑟𝑠 =
𝑓

𝑄

𝑏𝑏

𝑎+𝑏𝑏
 (2.2) 

Where f is the coefficient of anisotropy of the light field, and often takes a value of 0.33 

for the sun at its zenith over a level sea surface; Q is the conversion factor between 

radiance and Rrs; bb is the backscattering coefficient, such that all OACs of the water are 

accounted for, and a is the absorption coefficient such that all OACs of the water are 

accounted for. 

 For ocean color radiometry, it is important to atmospherically correct the 

reflectance values to Rrs measurements due to the fact that the water-leaving reflectance 

is only a small portion of the total reflectance reflected by Earth and received by the 

satellite sensors. Only approximately 10% of the radiation recorded by the satellite 
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sensors is contributed by the water surface, with the additional 90% being contributed by 

air molecules and aerosols within the atmosphere (Franz et al, 2015).  

2.4 Landsat 

One of the most common satellites used in study of bio-optical properties in small 

inland and coastal waterbodies is Landsat. On July 23, 1972, the first civilian Earth 

observation satellite was launched. Initially known as the Earth Resources Technology 

Satellite (ERTS-1), this satellite was later renamed as Landsat-1 (USGS, 2015a). The 

Landsat mission has since launched Landsat-2, Landsat-3, Landsat-4, Landsat-5, 

Landsat-7, and Landsat-8 in 1975, 1978, 1982, 1984, 1999, and 2013 respectively and is 

the longest continuous collection of space-based moderate-resolution remotely sensed 

imagery (USGS, 2015a). 

The Landsat satellites prior to Landsat-8 were all of a whisk broom design, 

meaning a mirror moved back and forth to reflect light from various points in the swath 

view to a single sensor. Landsat-8 is the first Landsat satellite to incorporate a push 

broom design so that a line of sensors perpendicular to the flight measure the entire swath 

width simultaneously. All of the Landsat satellites rely on sensors to measure reflectance 

in various sectors of the electromagnetic spectrum (EMS). Electromagnetic radiation 

(EMR) that is emitted from the sun travels through space and the atmosphere to reach the 

surface of the earth where it is reflected back into the atmosphere and then recorded by 

the sensors aboard the satellite. Different surface types reflect various portions of the 

EMS differently, which results in varying reflectance values. These values, known as 

brightness values (BV), are digitally recorded and may be displayed as images using 
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various band combinations, opposed to photographic images that only records 

information in the visible portion of the spectrum (Jenson, 2006).  

Due to advancing technology, the sensors aboard each Landsat satellite have 

improved overtime. Landsat-1, Landsat-2, and Landsat-3 contained the Multispectral 

Scanner (MSS) as the primary sensor and had a repeat cycle of 18 days. The MSS has a 

spatial resolution of 79 meters and collects information in four spectral bands that include 

both visible and NIR reflectance (Jenson, 2006). Landsat-4 and Landsat-5 carried the 

Thematic Mapper (TM) sensor as well as the MSS sensor and had a repeat cycle of 16 

days. The addition of the TM sensor provided spectral bands in the shortwave infrared 

(SWIR) and thermal regions as well as an improved spatial resolution of 30 meters for 

the visible and infrared bands (USGS, 2015a). Landsat 7 carries the Enhanced Thematic 

Mapper Plus (ETM+) sensor which provides the addition of a 15 meter resolution 

panchromatic band and improves the spatial resolution of the thermal band (Jenson, 

2006). Landsat 8, the satellite utilized for this study, contains the Operational Land 

Imager (OLI) and the Thermal Infrared Sensor (TIRS) that provide the addition of a deep 

blue band for coastal-aerosol studies and a band for cirrus cloud detection as well as two 

thermal bands. Landsat 8 collects reflectance data for a total of eleven spectral bands 

(Table 2.1), using 14 separate detector assemblies assigned in a push broom assembly 

(Franz et al., 2015). Each Landsat 8 OLI swath covers around 185 km width, which 

equates to ~7000 pixels (Franz et al., 2015). Both Landsat 7 and Landsat 8 have 16 day 

sampling intervals (USGS, 2015a). 
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Table 2.1 Landsat 8 Specifications 

Sensors: Band Band 
Designations 

Bandwidth 
(μm) 

Spatial 
Resolution 

Operational 
Land 
Imager 
(OLI) 

Band 1 Coastal Aerosol 0.43-0.45 30 m 
Band 2 Blue 0.45-0.51 30 m 
Band 3 Green 0.53-0.59 30 m 
Band 4 Red 0.64-0.67 30 m 
Band 5 NIR 0.85-0.88 30 m 
Band 6 Short-wave IR 1.57-1.65 30 m 
Band 7 Short-wave IR 2.11-2.29 30 m 
Band 8 Panchromatic 0.50-0.68 15 m 
Band 9 Cirrus 

Detection 
1.36-1.38 30 m 

Thermal 
Infrared 
Sensor 
(TIRS) 

Band 
10 

Thermal IR 10.60-11.19 100 m 

Band 
11 

Thermal IR 11.5-12.51 100 m 

 
Landsat 8 contains two sensors sensing reflectance in a total of 11 bands. Only bands 1-7 
are used in SPM modeling (USGS, 2015).  

Landsat 8 provides the necessary spatial resolution for looking at small coastal 

and inland bodies of water. Landsat 8 OLI contains narrow enough spectral bands in the 

visible to shortwave infrared range, making it a suitable tool for ocean color radiometry 

(Franz et al., 2015). The disadvantage of using Landsat imagery was the lower temporal 

resolution when compared to satellites such as NOAA’s MODIS. The lower temporal 

resolution limit the number of available field collection dates, and will provide a coarser 

temporal resolution when monitoring concentration changes. Additionally, Weeks Bay’s 

proximity to the Gulf of Mexico makes it prone to frequent cloud cover. Images with 

high percentages of cloud cover are unusable due to the prevention of data extraction 

from the satellite imagery. The frequent cloud cover, coupled with the lower temporal 

resolution, further limits the availability of useful imagery. However, Weeks Bay is 
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visible within two separate scanning paths, therefore increasing the temporal resolution to 

two scans within each 16 day rotation. For the sake of modeling, if the Landsat-8 imagery 

contained cloud interference on an in situ collection date, reflectance values from a 

radiometer were used to determine the predicted Landsat-8 reflectance for that precise 

point and time. The relative spectral response (RSR) of each Landsat-8 band provides the 

sensitivity of each given wavelength for the various satellite bands.  

2.5 Development of Bio-Optical Algorithms in Case-2 Waters 

Due to the complexity of Case-2 waters, established bio-optical models are often 

site specific due to local variations in environmental conditions (Merritt, 2016).  These 

variations may include differences in the size, shape, and mineralogy of the suspended 

particulates, concentrations of organics such as algal blooms, changes in fluvial, tidal, 

and wave dynamics, and variations in the size and depth of the body of water, as well as 

variations in the correlation between the three OACs (Tassan, 1994; Binding et al., 2005; 

Merritt, 2016). Furthermore, the development of bio-optical algorithms in Case-2 waters 

requires the proper satellite sensor to be chosen to fit the study area (Merrit, 2016). For 

smaller bodies of water such as small bays and estuaries, it is necessary to utilize sensors 

with the best possible spatial accuracy, such as Landsat. In larger bodies of water and the 

open ocean, a lower spatial resolution would be needed, allowing the use of sensors with 

higher spectral or temporal resolutions. Mapping more dynamic water bodies may require 

a higher temporal resolution than is provided by Landsat.  
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2.6 Review of Literature on SPM 

Thomason (2008) compared land use data derived from Landsat TM imagery to 

suspended sediment concentrations in Weeks Bay, Alabama. She determined areas of 

high and low potential for erosion by looking at the distribution of urban development 

and then obtained in situ SSCs in order to verify the existence of high erosion sites. 

Thomason’s study demonstrated that areas with high erosion potential resulted in higher 

SSCs, but the relationship between land use and suspended sediment ended up being 

much more complex than originally expected due to various components such as 

precipitation amounts, and tidal patterns. 

By only relying on in situ field sampling to determine SSCs, Thomason had a 

very limited coverage both spatially and temporally. The limited nature of in situ data 

collection is only one of the disadvantages of relying solely on field data collection. In 

situ suspended sediment data collection is both expensive and time consuming, while 

allowing for only a discrete number of samples to be collected. It can also be inaccurate 

due to human error, sampling bias, improper operation or miscalibration of equipment, 

and the disturbance of the environment (Jenson, 2006).  

Remote sensing has proved to be invaluable in a variety of water studies due to 

the wealth of information provided by the electromagnetic reflectance on the various 

OACs and the water itself (Roesler and Perry, 1994). Remote sensing systems provide a 

method of rapidly and repetitively collecting data on a synoptic scale without having to 

be present at the collection site. The use of remotely sensed data to study SSC relies on 

the fact that suspended sediment increases the reflectance of visible and NIR wavelengths 

from surface waters (Ritchie & Cooper, 2001; Doxaran et al., 2002; Devi et al., 2015). 
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The millions of microscopic particles found in a single liter of estuarine water are each 

capable of absorbing and scattering sunlight, therefore altering the reflectance seen by the 

satellite sensors (Bowers & Binding, 2006).  It is known that the red band is the most 

sensitive of the visible bands to suspended sediment, while organic material that contains 

chlorophyll has an absorption in the red band (Zhao, 2009). Many studies have 

demonstrated the effectiveness of using red and/or near-infrared band reflectance data to 

observe suspended sediment remotely (Miller et al., 2004; Han et al., 2006; Chen et al., 

2011; Zhao et al., 2011; Kaba et al., 2014). While the use of the red and infrared bands is 

most common when determining SSC, other band ratios have been used, such as a ratio 

between the green and NIR bands in the study by Zhang (2005).  

Depending on the range of SSCs present, different relationships may be 

acceptable. If the range of SSCs is fairly low, ranging between 0 and 50 mg/l, the 

reflectance values from most wavelengths may successfully be related to SSCs with a 

linear relationship (Ritchie & Cooper, 2001). For larger ranges of SSCs such as from 0 to 

200+ mg/l, a more complex curvilinear relationship between SSC and longer wavelengths 

must be used due to the fact that suspended sediment saturates the reflectance of lower 

wavelengths at lower SSCs (Ritchie & Cooper, 2001).  

Different remote sensing systems have been used to study suspended sediment 

including NOAA’s Advanced Very High Resolution Radiometer (AVHRR; Walker et al., 

1993), Système Pour l'Observation de la Terre (SPOT; Doxaran et al., 2002; Pavelsky & 

Smith, 2009; Gernez et al., 2015), Landsat (Zhang et al., 2014; Zheng et al., 2015) and 

the MODIS instrument on the Terra and Aqua satellites (Hu et al., 2004; Miller et al., 

2004; Chen et al., 2011; Espinoza et al., 2012; Liu et al., 2014; Vazyulya et al., 2014). 
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The remote sensing system used depends on the resolution required for each particular 

study. The satellite imagery must have sufficient temporal, spatial, spectral, and 

radiometric resolutions. Although designed for land studies, the Landsat satellites have 

been demonstrated to be effective for studying suspended sediment in smaller coastal and 

inland environments due to having sufficient resolutions for such regions.  

When using remote sensing to study SPM, the establishment of a relationship 

between SPM concentrations and reflectance data, along with the resulting algorithm, is 

site specific. This site specific quality of suspended sediment algorithms is credited to the 

variations in suspended sediment within different bodies of water. This includes 

inorganic particle properties such as size, shape, and mineralogy (Binding et al., 2005). It 

has also been demonstrated that the applicability of an algorithm may diminish after 

several years if a watershed event alters the properties of the sediments delivered to the 

waterbody (Devi et al., 2015). Previous investigations have developed models to study 

SSCs in the Gulf of Mexico region, including in the Mississippi Sound (Merritt, 2016), 

Tampa Bay (Hu et al., 2004), the Mississippi Delta (Kaufman et al., 2003), and Mobile 

Bay (Zhao et al., 2011). Prior to this study, there has yet to be an investigation of this 

nature exclusively focused on Weeks Bay in Alabama. 

Substantial research using remotely sensed imagery to study suspended sediment 

has been completed all over the world. Kaba et al. (2014) sought to produce historic 

sediment concentrations in Lake Tana using Terra MODIS images due to the erosion 

crisis in Ethiopia. Kaba et al. (2004) used MODIS imagery to determine the linear 

relationship between reflectance in the red and NIR band regions and total suspended 

sediments, turbidity and Secchi depth in the largest lake of Ethiopia.  
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Many studies have used remotely sensed reflectance data specifically in the Gulf 

of Mexico region. For example, Hu et al. (2004) explored three different methods to 

derive water quality parameters from remotely sensed imagery within the Tampa Bay 

estuary. Hu et al. (2004) tested a regression of in situ data against total radiance, single-

scattering corrected total radiance, and multi-scattering corrected total radiance to 

determine that a simple regression with in situ data is satisfactory for synoptic studies of 

estuaries and that more complex atmospheric correction processes provide little gain (Hu 

et al., 2004). Similarly, Kaufman et al. (2003) used MODIS imagery to determine an 

empirical algorithm that can be used to identify areas with suspended sediment in shallow 

waters with bottom reflections and turbid waters in regions including the Mississippi 

Delta and the west coast of Florida.  

Furthermore, the study by Haihong Zhao (2009) created a model for suspended 

sediment within Mobile Bay, Alabama using MODIS band 1 (red) imagery. Due to the 

larger size of Mobile Bay, MODIS imagery was acceptable for the study by Zhao et al. 

(2009). As a tributary estuary of Mobile Bay, Weeks Bay is significantly smaller than its 

parent, and therefore requires a satellite with a finer spatial resolution. Landsat meets this 

requirement, while still providing sufficient spectral bands for determining SSCs.  

Numerous studies have used Landsat imagery when spatial distribution requires 

more precision (Amos & Alfoeldi, 1979; Mertes et al., 1993; Lodhi et al., 1998; Zhang, 

2005; Wang et al., 2009; Qu, 2014; Montanher et al., 2014; Kong et al., 2015a; Lobo et 

al., 2015; Zheng et al., 2015) or a combination of Landsat and MODIS imagery (Min et 

al., 2012; Zhang et al., 2014). Gernez et al. (2015) used a combination of SPOT4 and 

Landsat 5, 7, and 8 imagery to study SPM concentrations in the turbid Gironde and Loire 
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estuaries in France. Lodhi et al. (1998), created twenty SSCs in a 7510 liter tank and used 

a high resolution spectroradiometer to obtain measurements that were then converted into 

the band widths of the Landsat- TM sensor. This study found that the wavelength range 

between 700 and 900 nm to be best for determine SSCs and that a second-order 

regression model to be the best estimator of SSC (Lodhi et al., 1998). Additionally, Lodhi 

et al. (1998) demonstrated that spectroradiometer data converted into Landsat band 

widths to may be used to accurately estimate SSC. More recently, Zhang et al. (2014) 

conducted an investigation on inter-annual and seasonal variations of SSC between 2000 

and 2010 in the Yellow River estuary using Landsat TM and ETM+ data. Zhang used 

Terra MODIS data to make atmospheric corrections and in situ data to create a model for 

retrieving SSC from Landsat imagery. A regression analysis was used to establish a 

positive correlation between in situ TSM measurements and Landsat reflectance. 

Similarly, the study by Kong et al. (2015a) relied on Landsat TM images to determine 

SSC in the Caofeidian coastal waters. The study looked at various bands and band ratios, 

as well as numerous model types such as linear, logarithmic, quadratic, power, and 

exponential (Kong et al., 2015a). The study also took into account the ratio of the 

reflectance to the particle size, i.e. binary combination factors. Kong et al. (2015a) 

determined the best model to be a quadratic relationship with the 3/2 TM band ratio, 

which corresponds to a red/green band ratio.  

Furthermore, the study by Zhang (2005) on SSC and turbidity in Old Woman 

Creek, Ohio relied on Landsat-7 imagery to observe a study area of only 0.3 km2 (Zhang, 

2005).  Zhang (2005) calculated SSC using turbidity values from automated collection 

stations using a relationship determined in a previous study. The SSCs were then related 
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to Landsat-7 reflectance values using a multivariate regression method to establish a 

model for determining SSC remotely. Zhang (2005) considered a total of 21 predictor 

variables, consisting of six Landsat bands and their 15 band ratios. The best model for 

determining SSC from Landsat reflectance data was found to be based on band 2 and 

band 4 of Landsat-7, which correspond to the green and NIR spectral regions (Zhang, 

2005).  

Bowers & Binding (2006) stated that ratios between two reflection coefficients 

are not sufficient for detecting variations in scattering, and that a combination of satellite 

measurements of brightness as well as color will produce a more accurate estimate of 

SSC. They used Monte Carlo modeling to relate absorption and scattering to attenuation 

and reflection coefficients in the Irish Sea (Bowers & Binding, 2006). Similarly, Kong et 

al. (2015b) developed a model to determine SSC using Landsat-5 imagery in the Gulf of 

Bohai using a quadratic polynomial semi-analytical model. The model was based on the 

inherent and apparent optical properties of water (Kong et al., 2015b).  

Han et al. (2016) sought to develop an algorithm for the remote sensing of SPM 

that was appropriate on a global scale. The GlobCoast project collected in situ SPM and 

Rrs data from multiple coastal environments in Europe, French Guiana, North Canada, 

Vietnam, and China in order to represent environments of different biogeochemical and 

physical processes (Han et al., 2016). The study tested various empirical and semi-

analytical approaches, seeking to find a single approach that allowed for global 

application. While a single algorithm was unable to be developed for global use, a 

generic semi-analytical approach was developed based on two standard semi-analytical 

equations for low-to-medium and highly turbid waters, as well as a mixing law for 
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intermediate waters (Han et al., 2016). Algorithm coefficients were calculated for a 

number of different remote sensing sensors, with the performance of the algorithm 

varying only slightly between the different systems (Han et al., 2016).  

2.7 Study Site 

As small, inland, tributary estuary, Weeks Bay is an ideal study site for the 

research of bio-optical properties utilizing the Landsat satellite. Weeks Bay has been 

established as an area of high research activity, but has yet to have a study of this nature 

conducted upon it. 

2.7.1 The National Estuarine Research Reserve System (NERRS) 

In 1972, the Coastal Zone Management Act (CZMA) was passed by Congress. In 

this act, Congress officially recognized the value, as well as the loss and damage, of 

coastal zones due to their natural, commercial, recreational, ecological, industrial, and 

esthetic resources (NOAA, 2005). The CZMA defines a “coastal zone” as the coastal 

waters and the adjacent shore lands that are strongly influenced by each other, including 

islands, transitional and intertidal areas, salt marshes, wetlands, and beaches (NOAA, 

2005). The CZMA was established to manage, develop, and protect these ecologically 

fragile coastal zones from the threat of the effects of population growth and economic 

development. In order to effectively protect these valuable resources, the CZMA states 

that coastal states must be encouraged to exercise authority over these areas, with the 

assistance of federal and local governments.  

The National Estuarine Research Reserve System (NERRS) was included as part 

of the CZMA in section 315 in order to designate and protect estuarine systems of the 
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United States. Under the CZMA, an estuary is defined as “a part of a river or stream or 

other body of water having unimpaired connection with the open sea, where the sea water 

is measurably diluted with fresh water derived from land drainage” (NOAA, 2005). An 

estuary may be declared a national estuarine reserve if it is a representative estuarine 

ecosystem that is suitable for long-term research and contributes to the biogeographical 

and typological balance of the NERRS, the law of the coastal state can provide long-term 

protection for the estuarine resources, designation of a reserve will further public 

awareness and provide opportunities for public education, and the coastal state has 

complied with the requirements of the regulations issued by the Secretary (NOAA, 2005). 

There are currently 28 coastal sites, covering 1.3 million acres of land that have been 

designated as NERRS locations. Each NERRS site is run by local state or university 

management, and is both funded and overseen by the National Oceanic and Atmospheric 

Administration (NOAA). As a result of this act, in 1986, Weeks Bay in Alabama became 

the 16th site of the NERRS and was renamed as the Weeks Bay National Estuarine 

Research Reserve.  

Through the NERRS, a framework has been established for the sharing of 

management approaches, research results, and techniques for estuarine education 

between programs within the nation (NOAA, 2007). This has allowed for an increase in 

understanding and national coordination in our knowledge of estuarine ecosystems. From 

this further understanding, we can devise improved methods of preserving estuarine 

environments. 
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2.7.2 The Weeks Bay NERR 

The Weeks Bay NERR is located in Baldwin County, Alabama, approximately 30 

miles southeast of Mobile. The reserve covers an area of 6,525 acres of both land and 

water habitats that include forested wetlands and swamps, marshes, and submerged 

aquatic vegetation (NOAA, 2007). Weeks Bay is a small, shallow, coastal estuary with an 

average depth of 1.6 meters and a surface area of approximately 4 square miles (NOAA, 

2007). Weeks Bay is secondarily characterized as a tributary estuary due to being part of 

the greater Mobile Bay estuary system (Cartwright, 2002). The bay has a daily tidal 

pattern with a mean range of approximately 0.4 meters (Miller-Way et al., 1996). 

Freshwater discharges into the bay from the Fish and Magnolia Rivers, while an inflow 

of saltwater is provided by the Gulf of Mexico through Mobile Bay. The Fish River is the 

dominant source of freshwater, providing 73% of the approximately 9 m3s-1 inflow 

(Miller-Way et al., 1996). The bottom of the bay is composed of a combination of silts 

and clays deposited from the Fish and Magnolia Rivers within the interior of the bay. In 

addition, Weeks Bay contains quartz sand deposits around the perimeter, most likely the 

result of erosion along the shoreline (Miller-Way et al., 1996). 

2.7.2.1 Weeks Bay Watershed 

The watershed of Weeks Bay covers an area of around 149,000 acres in Baldwin 

County, and includes parts of the city limits of Fairhope, Robertsdale, Foley, and Loxley 

(NOAA, 2007). It includes the watersheds of the Fish and Magnolia Rivers. The 

watershed of Weeks Bay has experienced substantial urban growth throughout its recent 

history. The population of Baldwin County has increased significantly between 1990 and 

2010. The census populations for Baldwin County in 1990, 2000, and 2010 were 



www.manaraa.com

 

26 

determined to be 98,280, 140,415, and 182,265 respectively (Forstall, 1995; U.S. Census 

Bureau, 2000, 2010).  This equates to a 42.87% population increase between 1990 and 

2000 and a 29.80% increase between 2000 and 2010. Corresponding to the population 

increase is a decrease in forested and herbaceous vegetation and an increase in 

urban/built-up land cover between 1990 and 2000 as depicted in Table 2.2 (Cartwright, 

2002). Urban development has likely continued to increase since 2000, given the 

continued rise in population. Within the Weeks Bay watershed, in 2011 the percentage of 

land classified as “Urban/Built Up” was 14.73% according to the USGS 2011 National 

Land Cover Database (NLCD) and the classifications described by Cartwright (2002), 

while the percentage of “Forested Vegetation” was 32.58%, and “Herbaceous 

Vegetation” was 42.42%. The Economic Development Alliance (EDA) of Baldwin 

County describes Baldwin County’s significant growth by stating that the county is tied 

for the 8th fastest growing metropolitan statistical area (MSA) in the nation in 2014, was 

the fastest growing county in Alabama in 2015, has had a 45% population growth since 

2000, and has the largest projected population growth among all Alabama MSAs 

(Baldwin County EDA, 2017).  
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Table 2.2 Land Use/Land Cover Change Between 1990 and 2000 in Baldwin County 

 

1990 2000 

Percent of 
Watershed Acres Hectares Percent of 

Watershed Acres Hectares Percent 
Change 

Water 1.84% 2,302 932 1.89% 2,365 957 2.74% 

Forested 
Vegetation 33.12% 41,468 16,781 31.49% 39,431 15,957 -4.91% 

Herbaceous 
Vegetation 28.94% 36,235 14,664 21.00% 10,640 10,640 -27.44% 

Seasonal 
Herbaceous 
Vegetation 

19.72% 24,696 9,994 23.20% 11,753 11,753 17.60% 

Transitional/ 
Mixed 

Vegetation 
7.08% 8,864 3,587 12.22% 6,910 6,190 72.56% 

Urban/ Built-
Up 1.34% 1,677 679 2.58% 1,306 1,306 92.47% 

Sparse/ 
Residual 

Vegetation 
7.96% 9,969 4,034 7.63% 3,868 3,868 -4.13% 

Baldwin County, Alabama has experienced a significant increase in urban/build-up land 
cover/land use (Cartwright, 2002) 
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Figure 2.1 Weeks Bay Watershed in Baldwin County, Alabama 

The Weeks Bay watershed covers 149,000 acres in Baldwin County (NOAA, 2007). 



www.manaraa.com

 

29 

 

Figure 2.2 Weeks Bay Hydrology 

The Weeks Bay watershed includes the watersheds for the Fish and Magnolia Rivers. 
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Figure 2.3 Land cover in the Weeks Bay watershed 

 

2.7.2.2 Climate 

The Weeks Bay watershed is located in a humid subtropical climate region with 

warm summers and relatively mild winters and occasional cold waves (Miller-Way et al., 

1996). The Gulf of Mexico provides a relatively constant flow of usually unstable, humid 
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air that results in frequent thunderstorms during the summer months (Miller-Way et al., 

1996). Strong winds from tropical storms and cold fronts reduce vertical stratifications 

and horizontal variations in sediment concentrations by causing an increase in turbulent 

mixing (Zhao, 2009). The western and eastern shores of Mobile Bay receive an average 

annual precipitation total of 165 centimeters (65 inches) from a combination of winter 

storms, thunderstorms, and tropical systems, making it one of the wettest regions along 

the Gulf Coast (Miller-Way et al., 1996). Maximum summer air temperatures typically 

vary between the upper 20℃ (80 ℉) the lower 30℃ (90 ℉) range, with thunderstorms 

usually limiting peak temperatures to this ranges (Miller-Way et al., 1996). High absolute 

humidity, however, occasionally allows the Mobile and Weeks Bay region to experience 

temperatures exceeding 38℃ (100 ℉) (Miller-Way et al., 1996) 

.
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CHAPTER III 

DATA AND METHODS 

3.1 In Situ Measurements 

In situ water samples were collected on four days between May and September 

2016. Collection corresponded to Landsat 8 passes over Weeks Bay as depicted in Table 

3.1. Weeks Bay is visible in both path 20 and 21 along row 39. Twelve sampling 

locations were selected prior to the first date of collection such that the points were 

dispersed throughout Weeks Bay, with one point in Mobile Bay at the mouth of Weeks 

Bay (Figure 3.1). By planning to sample a transect of Weeks Bay from Fish River to the 

mouth of the estuary, it was expected that the samples would display a range of salinities, 

as well as a range of SSCs, due to river input being the most important source of 

sediment for most estuaries (Kennett, 1982). Sampling occurred between approximately 

9:00 AM and 1:00 PM local time to coincide with the 11:25 AM (Path 21) or 11:19 (Path 

20) overpass of the Landsat 8 satellite.  
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Figure 3.1 Predetermined Sampling Locations 

 

Table 3.1 Landsat 8 scenes corresponding to periods of water sample collection 

Date Entry ID Row Path Cloud 
Cover (%) 

Sun Elevation 
(degrees) 

Sun Azimuth 
(degrees) 

5/9/16 LC80210392016130LGN00 39 21 82 66.80024 118.3639 
6/19/16 LC80200392016171LGN00 39 20 35 68.81741 103.5181 
6/26/16 LC80210392016178LGN00 39 21 10 68.46992 103.4206 
9/30/16 LC80210392016274LGN00 39 21 0 51.72757 147.5127 
       

3.1.1 Field Measurements 

At each sampling location, GPS coordinates (+/- 3 m or less accuracy) were taken 

to ensure improved spatial accuracy when relating the in situ observations to observed 

satellite reflectance. Three surface water samples were taken in clean 32 ounce Nalgene 

bottles. Samples were collected from the upper 20-40 cm of the water column on behalf 
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of the assumption that light at 645 nm can penetrate the upper 40 cm of the water column 

(Zhao et al., 2011) and so the in situ water samples would reflect the view of the Landsat 

sensors as closely as possible. The samples were then immediately chilled at ~1-5℃ by 

placing them into a cooler with ice until lab processing. 

A Geophysical and Environmental Research (GER) 1500 Radiometer was used to 

determine water surface reflectance in the region from 300 to 1050 nm. At each site 

location, two sets of scans were taken. Each set of scans including a reference scan of a 

99% spectralon reference panel by Labsphere, three consecutive scans of the target 

surface water, and a scan of the sky such that the radiometer was held at a 45° angle 

directed away from the sun at a clear portion of the sky.  

Additionally, a number of other measurements were recorded at each sampling 

location. An Eco-Triplet was used to determine the profiles of fluorescence for 

chlorophyll, phycocyanin, and phycoerythrin to account for the organic portion of the 

samples. Depth and Secchi depth observations were recorded at each sampling location. 

A calibrated Hanna multiparameter probe was used to record the vertical profiles of pH, 

dissolved oxygen, temperature, and salinity at each site.  

3.1.2 Spectroradiometer Reflectance Measurements 

Raw GER 1500 radiometer data collected from each sampling location was 

downloaded and then processed into Landsat-8 reflectance values. The raw radiometer 

values provided by the radiometer were converted into Rrs, by applying the following 

equation to each of the three target recordings at each wavelength: 

 𝑅𝑟𝑠 =
𝐿𝑡𝑎𝑟𝑔𝑒𝑡−(0.02𝐿𝑠𝑘𝑦)

99𝐿𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝜋
 (3.1) 
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Where Ltarget is the radiance of the target surface water, 0.02Lsky is an 

approximation for the Rayleigh path radiance, and 99Lreferenceπ is the incident solar energy 

as recorded by the 99% spectralon reflectance panel. The spectral curve for each target 

scan was plotted in order to visually assess the accuracy of each. If a particular target 

scan differed greatly, it was not included in an average of the target scans. This was done 

for both sets of scans taken at each site location. The two sets were then averaged 

together to calculate the final Rrs value for each wavelength at each site location.  

The GER 1500 radiometer collects data in 512 bands that range from 284.84 nm 

to 1094.17 nm with an average interval of 1.58nm. In order to mimic Landsat 8 

observations, the radiometer hyperspectral data must be converted into the multispectral 

bands associated with the satellite sensors. Landsat 8 collects in 11 spectral bands as 

previously described in Chapter 2.4. For the sake of SPM modeling, the hyperspectral 

data were only converted to bands 1-5, which are bands corresponding to visible and NIR 

wavelengths, as well as band 8 which is the panchromatic band.   

Each band reports a single value for each pixel within the scene, which represents 

the reflectance received over a specific spectral range. To convert the hyperspectral data 

into six single readings, the hyperspectral data must first be interpolated such that the 

radiometer values are converted into whole integers, opposed to decimal values. This 

allows the RSR of the Landsat 8 OLI sensor to be applied to the radiometer data. The 

RSR reports the sensitivity of each given wavelength for the various satellite bands. The 

RSR value will be close to one at the band center, such that the sensor is most sensitive to 

those wavelengths, and will decrease as the wavelength values move away from the band 

center as the sensor’s sensitivity decreases. The RSR function must be applied for each of 
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the six Landsat 8 bands to the radiometer data in order to derive the values given for each 

pixel observed by the satellite.  

3.1.3 Particulate Backscattering 

At each sampling location, an Eco-Triplet was used to record profiles of optical 

backscattering at wavelengths of 470, 532, and 650 nm. Following the precedent set by 

Reynolds et al. (2001), the value of backscattering at 555 nm was selected for the 

parameterization of our model. The value of backscattering at 555 nm was calculated by 

determining the unit bbp value between bbp(532) and bbp(650). The bbp value at 555 nm 

was then calculated through the addition of the unit bbp value to bbp(532). Using the 

backscattering at 555 nm, bbp was determined using the equation derived by Reynolds et 

al. (2001): 

 𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(555) (
555

𝜆
)

𝛾

 (3.2) 

Where γ is the spectral slope and may be calculated using the equation (D’sa et 

al., 2007; Dash et al., 2011): 

 𝛾 = −0.566 − [1.395 𝑙𝑜𝑔{𝑏𝑏𝑝(555)}] (3.3) 

 

3.2 Lab Methods 

Directly after collection, the water samples were filtered and processed for the 

analysis of SPM, CDOM, High Performance Liquid Chromatography (HPLC), 

absorption, toxins, PC, toxic metals, nutrients, microscopy, and four different bacteria 

counts including Heterotrophic Plate Counts (HPC), E Coli, Enterococci (ENT), and 
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Total Coliform. Only SPM, CDOM, and PC were required for the modeling process. The 

remaining data was gathered for use in future research. 

3.2.1 Suspended Particulate Matter (SPM) 

Water samples were filtered for SPM within 24 hours of collection in order to 

limit the deterioration of organic particulate matter. SPM concentrations in mg/L were 

determined using the glass-fiber filter method (Guy and Norman, 1970; Merritt, 2016). 

Filtration was done using Whatman GF/F 47 mm glass microfiber filters (pore size 

0.7μm). For each sampling date, enough filters for duplicates of each sample and two 

controls were combusted in aluminum foil at 500℃ for one hour to remove any 

contaminant matter. Once contaminants were eliminated from the filters, they were 

washed in distilled (DI) water, and then placed within individually in separate labeled 43 

mm VWR International Aluminum Crinkle Dishes. The filters in the aluminum dishes 

were then dried at 105℃ for one hour. Filters were then weighed to four significant digits 

before being used to filter the water samples. Once the filters were prepared and weighed, 

200 mL of water sample was filtered through the Whatman filter papers using a vacuum 

pump filtration system. Samples were filtered at a reduced pressure to avoid damaging 

any organisms present within the sample. The filter was dried once again at 105℃ for one 

hour, and then reweighed to four significant digits. This weight, minus the weight of the 

filter, represents the total concentrations of SPM in mg/L. The sample filters were then 

wrapped individually in foil, baked at 500℃ for one hour to fully combust organic 

material and then reweighed to determine the SPIM concentrations. The SPOM 

concentrations were then determined by subtracting the SPIM concentrations from the 

total SPM concentrations. 
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3.2.2 Color Dissolved Organic Material (CDOM) 

Water samples were filtered for CDOM on the same day as collection to diminish 

the possible degradation of organic content. CDOM concentrations were determined 

using the method described by Dash et al. (2011). Subsamples (50 ml) of the surface 

water sample were filtered through Whatman Nuclepore Track-Etch Membrane filters 

with 47 mm diameter and 0.2 μm pore size using a low pressure water retaining vacuum. 

The 0.2 μm pore size removes all components of the water sample barring CDOM, such 

that the remaining water may be analyzed to determine the absorption solely due to 

CDOM. The samples were stored in amber colored bottles and refrigerated at 4℃ until 

analysis could occur. Amber colored bottles were used to reduce the amount of light the 

samples were exposed to. 

The analysis was performed using a PerkinElmer Lambda 850 spectrophotometer 

that records an absorption spectra between 200 nm and 750 nm at 2 nm intervals. 

Samples were allowed to reach room temperature before analysis. The spectrophotometer 

records a scan of both DI water and the sample water in order to subtract the DI 

absorption from the sample water absorption, therefore reporting the absorption of 

CDOM alone. Absorption between wavelengths of 702 nm to 750 nm is expected to be 

zero, making a baseline correction necessary to rectify the initial output of the 

spectrophotometer. The absorbance values between 702 nm and 750 nm were averaged 

and this average was subtracted from each wavelength between 400 nm and 700 nm. Any 

negative absorbance values were assumed to be zero. After the baseline correction, the 

absorption coefficient was calculated using the following equation:  

 𝛼(𝜆) =
2.303𝐴(𝜆)

𝑙
 (3.4) 
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Where, a(λ) is the absorption coefficient at each wavelength, A(λ) is the 

absorbance, and l is the path length in meters, which was 0.01m for the cubic used in the 

PerkinElmer Lambda 850 spectrophotometer. 

3.2.3 Phycocyanin (PC) 

  The absorption of phycocyanin (PC) may be determined through the 

concentration measurement of PC at each sampling site. In order to determine the 

concentration measurement, 50 ml of sample water was filtered onto polycarbonate filters 

with 4.7 cm diameter and 0.2 μm pore size. The filtered samples were then frozen at -

20℃ until analysis. PC was extracted from the filtered samples using the method 

described by Horvath et al. (2013) using a 0.05 M phosphate buffer (pH 6.8). The filter 

papers were placed in 15 ml centrifuge tubes with 5 ml of the buffer solution and then 

vortexed for approximately one minute to displace cells from the filter paper into the 

buffer solution. The samples were then placed on ice and sonicated using a Misonix 

Sonicator 3000 at 30-40 W until the filter paper degraded (approximately 2 minutes). 

Samples were then incubated in a dark refrigerator set at 4℃ for 1 hour. After incubation, 

the samples were centrifuged at 4000 RPM with a relative centrifugal force of 1,240g in 

an IEC Centra CL2 centrifuge for 10 minutes. The samples were then ready to be placed 

in a Horiba Jovin Yvon FloroMax®-4 Spectrofluorometer with λexcitation=615 nm and 

λemission=647 nm to measure fluorescence. The sample fluorescence values were then 

interpolated using the following previously constructed standard PC curve equation that 

adjust for the volumes of both the sample water and buffer solution in order to determine 

PC concentrations:  
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 𝑃𝐶 (
𝜇𝑔

𝐿
) =

[𝐹𝑠−𝐹𝑏]

𝑅
∗[467.52−0.3622]∗𝑉𝑏

𝑉𝑠
 (3.5) 

Where Fs is the fluorescence of the filtered sample, Fb is the fluorescence of the buffer 

solution, Vb is the volume in liters of the buffer solution, Vs is the volume in liters of the 

filtered sample, and R is the Raman peak area.  

3.2.4 Algal and Non-Algal Particulate Absorption 

Suspended particulate matter (SPM) may be divided into both algal and non-algal 

particulate components. In order to determine the absorption of both components, within 

24 hours of sample collection, 50 mL of sample water was filtered with a low pressure 

vacuum using Whatman GF/F glass fiber filters with 25 mm diameter and 0.7 μm pore 

size. The filter papers were than stored in tissue capsules and frozen at -80℃ until 

analysis. The filter papers were kept in the dark as much as possible to inhibit the 

deterioration of the organic component.  

Before processing began, samples were allowed to reach ambient room 

temperature by being placed in the dark at room temperature for approximately 30 

minutes. Analysis of absorption was performed using the same PerkinElmer Lambda 850 

spectrophotometer that was used to determine the absorption of CDOM. The absorbance 

between 200 nm and 750 nm at 1 nm intervals was determined for each of the samples, as 

well as for a filter paper filtered with 15 ml of distilled water.  

Once each sample was run to determine the total absorbance, the filter papers 

were placed in 15 ml of methanol for a minimum of 30 minutes and then filtered to 

dissolve phytoplankton. The filter papers were run once again using the 

spectrophotometer to determine the non-algal particulate (NAP) absorbance. The NAP 
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absorbance value was subtracted from the total absorbance value in order to determine 

the absorbance of phytoplankton.   

3.3 Satellite Processing 

Landsat 8 OLI data is freely available from the USGS through the Earth Explorer 

user interface (https://earthexplorer.usgs.gov/). Landsat 8 images were downloaded for 

dates corresponding to in situ sampling, as expressed in Table 3.1. Files are provided in a 

compressed tape archive (tar) file, with each band in a separate GeoTIFF format. The 

bands are displayed using the Universal Transverse Mercator (UTM) projection. A 

Landsat Metadata file is included in each scene download, providing information such as 

correction coefficients, the sun elevation, and other collection information. 

Landsat 8 data is provided as Digital Numbers (DN) in 16-bit unsigned integer 

format. These were then converted into Top Of Atmosphere (TOA) reflectance by using 

the provided radiometric rescaling coefficients (USGS, 2015). Using these coefficients, 

Equation 3.6 was applied to each band to convert into TOA Reflectance: 

 𝜌𝜆′ = 𝑀𝜌𝑄𝑐𝑎𝑙 + 𝐴𝜌 (3.4) 

Where 𝜌𝜆′ is the TOA planetary reflectance, without correction for solar angle, 

𝑀𝜌 is the band specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number), 𝑄𝑐𝑎𝑙 is the standard 

product pixel values (DN), and 𝐴𝜌 is the band-specific additive rescaling factor from the 

metadata (REFLECTANCE_ADD_BAND_x, where x is the band number) (USGS, 

2015). The TOA reflectance was than corrected for variations in the solar angle with 

Equation 3.7: 
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 𝜌𝜆 =
𝜌𝜆′

cos 𝜃𝑆𝑍
=

𝜌𝜆′

sin 𝜃𝑆𝐸
 (3.5) 

Where 𝜌𝜆 is the TOA planetary reflectance, 𝜃𝑆𝑍 is the local sun elevation angle in 

degrees from the metadata (SUN_ELEVATION), and 𝜃𝑆𝐸  is the local solar zenith angle 

such that 𝜃𝑆𝑍 = 90° − 𝜃𝑆𝐸  (USGS, 2015).  

3.4 SPM Retrieval Algorithm Development and Validation  

Numerous previously developed models for SPM and SPIM retrieval using 

remote sensed reflectance were assessed to determine the functionality for Weeks Bay as 

depicted in Table 3.2. Each model was first tested exactly as published in the literature. 

The previously developed models were then adjusted by keeping the defined independent 

parameters, and altering the coefficients by running regressions with the Weeks Bay 

SPM/SPIM data. Two-thirds of the sample sites were used to develop the new 

coefficients, with one-third being reserved for the validation of the adjusted models. For 

each model, both original and adjusted, the R2 and root mean square error (RMSE) 

statistics were provided. R2 is the coefficient of determination and measures the 

proportion of the variance in the SPM/SPIM concentrations that is explained by the 

independent variables (Chapman, Lembo, & Monroe, 2014). Being a proportion, the most 

significant R2 value is R2=1, such that 100% of the variability is explained by the 

independent variables. The RMSE measures the difference between the predicted and 

observed values. RMSE was calculated in mg/L, as depicted in Equation 3.8, as well as a 

percent, as depicted in Equation 3.9. 

 𝑅𝑀𝑆𝐸 (
𝑚𝑔

𝐿
) = √

∑ (𝑦𝑝−𝑦𝑜)2𝑛
𝑖=1

𝑛
 (3.8) 
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 𝑅𝑀𝑆𝐸 (%) =
𝑅𝑀𝑆𝐸(

𝑚𝑔

𝐿
)

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
∗ 100 (3.9) 

Once the previously developed models were tested, many additional possible 

reflectance parameters were tested as potential variables in a Weeks Bay SPM/SPIM 

retrieval algorithm. These reflectance parameters included single bands, the natural logs 

of single bands, band ratios, band combinations, and combinations of the previously 

listed. Both linear, and nonlinear models were tested for each reflectance parameter. As 

with the alteration of coefficients in preexisting models, 32 sites were used for model 

development, with 16 being reserved for validation. Exponential, logarithmic, power, 2nd 

order polynomial, and 3rd order polynomial equations were considered as potentials for 

the nonlinear modeling. The algorithm with the highest R2 value was chosen for each 

reflectance parameter. A multiple linear regression was also considered for an SPM 

concentration retrieval algorithm. 

In addition to the R2 and RMSE statistics, the p-value, F-statistic, t-statistic, and 

Pearson’s product moment correlation coefficient (R) were also reported. The p-value 

reports the statistical significance of the linear regression. The 95% level was used to 

assess significance, such that an algorithm with a p-value of less than 0.05 is considered 

significant and therefore a good fit for the data. Due to the nature of the p-value 

calculation, the p-values will not be provided for the nonlinear regression equations 

(Frost, 2014). The F-statistic is a ratio of two variances and assesses the difference of 

variances (Frost, 2016). The t-test compares two sample means for difference and may be 

used to determine if the predicted SPM/SPIM values coincide with the in situ 

observations (Chapman, Lembo, & Monroe, 2014). Pearson’s product moment 

correlation coefficient measures the association of the linear relationship between two 
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variables with a strength between +1 and -1 (Chapman, Lembo, & Monroe, 2014). The 

stronger the association, the closer R is to +/- 1. A correlation greater than 0.8 is 

generally considered to be strong, while any correlation less than 0.5 would be described 

as weak (Roberts & Roberts, 2017).  

A limited number of possible reflectance parameters for SPM were also analyzed 

for each sampling trip on an individual basis. Due to the small sample size per sampling 

trip (n=11, 12, or 13), four sites were reserved from each field cruise for validation. Both 

a linear and nonlinear model was considered for each reflectance parameter. For the 

nonlinear models, exponential, logarithmic, power, and 2nd order polynomial equations 

were considered. A 3rd order polynomial equation was not considered in order to limit the 

complexity when using such a small sample population.  
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3.5 SPM Simulation 

A semi-analytical simulation approach was attempted to determine the 

contribution of Rrs from the various OACs present in Weeks Bay, including SPM/SPIM. 

In order to simulate the Rrs of a water body, one must take into account the reflectance of 

all OACs within the water body being studied. The total reflectance of the water may be 

represented by the following equation: 

 𝑅𝑟𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑟𝑠𝑤𝑎𝑡𝑒𝑟 + 𝑅𝑟𝑠𝐶ℎ𝑙𝑎 + 𝑅𝑟𝑠𝐶𝐷𝑂𝑀 + 𝑅𝑟𝑠𝑁𝐴𝑃 (3.10) 

Through inherent optical properties, Rrs may be determined by the following 

equation: 

 𝑅𝑟𝑠(𝜆) = 0.54(
𝑓

𝑄
)(

𝑏𝑏

𝑎+𝑏𝑏
) (3.11) 

where 0.54 corrects for Fresnel reflectivity, f is the coefficient of anisotropy of the 

light field, and often takes a value of 0.33 for the sun at the zenith and a level sea surface; 

Q is the conversion factor between radiance and Rrs; bb is the backscattering coefficient, 

such that all OACs of the water are accounted for, and a is the absorption coefficient such 

that all OACs of the water are accounted for (Reynolds et al., 2001; Dash et al., 2011). 

By including the backscattering and absorption coefficients of all OACs, Equation 3.11 

may be modified the total Rrs such that  

 𝑅𝑟𝑠𝑡𝑜𝑡𝑎𝑙 = 0.54 (
𝑓

𝑄
) (

𝑏𝑏𝑤+𝑏𝑏𝑝

(𝑎𝑤+𝑐𝑑𝑜𝑚+𝑎𝑐ℎ𝑙𝑎+𝑎𝑁𝐴𝑃+𝑎𝑝𝑐)+(𝑏𝑏𝑤+𝑏𝑏𝑝)
) (3.6) 

Where bbw is the backscattering of water, bbp is the backscattering of all particulate 

matter, and aw, acdom, achl, aNAP, and apc, are the absorption coefficients of water, CDOM, 

Chl a, SPIM, and PC respectively.  
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The components of non-algal (NAP) and algal (Chl a and PC) particulates may 

then be removed from the simulation equation to simulate the Rrs of all components 

except the suspended particulate matter, such that the equation only includes the 

backscattering and absorption for water, CDOM, and PC. This value was then subtracted 

from the Landsat reflectance data in order to obtain the reflectance solely from SPM. 

Additionally, only the inorganic OAC (NAP) may be removed from the simulation to 

simulate the Rrs of the water body without the presence of inorganic suspended sediment. 

This value was then subtracted from the Landsat reflectance data in order to obtain the 

reflectance solely from SPIM. 

3.6 Precipitation Data 

As a NERR, Weeks Bay has a meteorological station located within the grounds 

of the reserve. Meteorological data is available for download from the NERR Centralized 

Data Management Office through the Advanced Query System. Meteorological data was 

downloaded for the date of each sampling trip and the 7 days prior to collection for the 

Safe Harbor Met Station.  
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CHAPTER IV 

RESULTS 

4.1 In Situ Measurements 

4.1.1 Field Measurements 

Water and optical Secchi depth were measured at each site for each of the four 

sampling trips. On May 9, 2016, the water depth ranged from 1.22 to 3.35 m, while the 

Secchi depth ranged from 0.26 to 0.68 m. On the June 19, 2016 trip, the water depth 

ranged from 0.91 to 2.50 m, and the Secchi depth ranged from 0.46 to 0.61 m. On the 

June 26, 2016 trip, the water depth ranged from 0.76 to 2.83 m, with the Secchi depth 

only ranging from 0.37 to 0.46 m. On the September 30, 2016 trip, the water depth 

ranged from 0.97 to 2.74 m, while the Secchi depth ranged from 0.20 to 0.43 m. A 

comparison of these depths may be seen in Figures 4.1, 4.2, 4.3, and 4.4.  

 The Secchi depth varied by as much as 1.83 at the mouth of the Fish River, 

ranging from 1.52 m on June 26 to 3.35 m on May 9, 2016. The collection sites central in 

the Bay varied by as much as 0.60 m. Variation increased for sites towards the influx of 

the Fish River, as well as those located nearest the mouth of Mobile Bay, with variations 

of 0.9 to 1.2 m per site.  

Overall, Secchi depth was fairly consistent both temporally and spatially. The 

Secchi depth typically varied by less than 0.3 m per site. Only the site directly at the 
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mouth of the Fish River and a site towards the mouth of Mobile Bay varied by over 0.3 

m. Variation of Secchi depth tended to increase with proximity to Mobile Bay.  

 

 

Figure 4.1 Water Depth and Secchi Depth on May 9, 2016 
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Figure 4.2 Water Depth and Secchi Depth on June 19, 2016 

 

 

Figure 4.3 Water Depth and Secchi Depth on June 26, 2016 
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Figure 4.4 Water Depth and Secchi Depth on September 30, 2016 

 

The Hanna multiparameter probe collected pH, DO, temperature, and salinity data 

for the entire water column at 48 of the 49 sites collected over the duration of the four 

sampling trips. There is no Hanna data for site 8 on June 26, 2016. The pH values ranged 

from 7.28 to 8.99, with the lowest pH occurring on May 9, 2016, and the highest 

occurring on September 30, 2016. May 9, 2016 had the greatest variation in pH values, 

ranging from 7.28 to 8.67, while June 19, 2016 had pH values from 7.66 to 8.55, June 26, 

2016 had pH values from 8.00 to 8.90, and September 30, 2016 had pH values from 8.03 

to 8.99 as depicted in Figure 4.5.  
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Figure 4.5 pH Measurements 

pH measurements for 48 sample sites during four field cruises. 

 

DO values ranged from 0.29 to 10.91 parts per million (ppm), with the highest 

DO value occurring on September 30, 2016, and the lowest DO value occurring on May 

9, 2016. Only the May 9, 2016 collection trip reported DO levels over 2 ppm. May 9, 

2016 had DO levels ranging from 2.22 to 10.91 ppm, demonstrating the greatest 

variability in DO across the bay. The remaining field cruises depicted much less variation 

in DO values throughout the bay. June 19, 2016 ranged from 1.06 to 1.70 ppm, June 26, 

2016 ranged from 0.98 to 1.59 ppm, and September 30, 2016 ranged from 0.29 to 0.38 

ppm as depicted in Figure 4.6. Due to the low recorded values of DO by the Hanna 

instrument, the NERR water quality station data was used to assess the validity of the 
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Hanna recordings. The NERR water quality station data typically indicates much higher 

DO values, and therefore the inaccuracy of the Hanna instrument DO data.  

 

Figure 4.6 DO (ppm) Measurements 

DO (ppm) measurements for 48 sample sites during four field cruises. 

 

Salinity values ranged from 0.42 to 22.98 Practical Salinity Units (PSU), with the 

highest value occurring on September 30, 2016 at the mouth of Weeks Bay, and the 

lowest value occurring on May 9, 2016 in the northern portion of the bay. May 9, 2016 

has salinity values that range from 0.42 to 12.76 PSU, June 19, 2016 has values that 

range from 3.42 to 14.24 PSU, June 26, 2016 has values that range from 5.39 to 11.86 

PSU, and September 30, 2016 has values that range from 11.95 to 22.98 PSU as depicted 

in Figure 4.7. 
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Figure 4.7 Salinity (PSU) Measurements 

Salinity (PSU) measurements for 48 sample sites from four field cruises. 

 

Temperature values ranged from 23.89 to 31.49 ℃ as depicted in Figure 4.8. 

Temperature values were on average the lowest on May 9, 2016, ranging from 23.39 to 

28.64 ℃. May 9, 2016 depicted the highest variation in temperatures.  Temperature 

values were consistently the highest on June 26, 2016, ranging from 30.48 to 31.49 ℃. 

Temperatures ranged from 27.84 to 29.99 ℃ on June 19, 2016 and from 25.24 to 27.35 ℃ 

on September 30, 2016.  
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Figure 4.8 Temperature (℃) Measurements 

Temperature (℃) measurements for 48 sample sites from four field cruises.  

 

4.1.2 Spectroradiometer Reflectance Values 

Hyperspectral Rrs values were derived from raw GER 1500 radiometer data for 

each sampling location. The hyperspectral values were then converted into multispectral 

values in order to mimic Landsat-8 bands 1-5 and 8. The Rrs values for each trip may be 

seen in Figures 4.9, 4.10, 4.11, and 4.12. There is no radiometer data for site 1 radiometer 

data on June 19, 2016. The Rrs values typically peak at Band 3 which represents the 

green portion of the EMS. 
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Figure 4.9 In Situ Radiometer data collected on May 9, 2016 

 

Figure 4.10 In Situ Radiometer data collected on June 19, 2016 
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Figure 4.11 In Situ Radiometer data collected on June 26, 2016 

 

Figure 4.12 In Situ Radiometer data collected on September 30, 2016 
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4.2 Lab Results 

4.2.1 SPM Concentration Measurements 

Total SPM, as well as SPIM and SPOM concentrations were measured at 49 

sampling sites over the duration of 4 sampling trips. The total SPM concentrations ranged 

from 19.5 mg/L to 85.5 mg/L. SPIM ranged from 6.5 mg/L to 21.5 mg/L representing an 

average of 29% of the total SPM. SPOM ranged from 11.8 mg/L to 66.25 mg/L 

representing an average 71% of the total SPM. The sites demonstrating peak 

concentrations vary between sampling trips, but higher concentrations were found in the 

southern and/or central portion of the bay, while lower concentrations were found in the 

northern portion where the Fish River flows into Weeks Bay. The spatial variability of 

the total SPM concentrations may been seen in Figures 4.14, 4.16, 4.18, and 4.20. The 

concentrations of total SPM, SPIM, and SPOM for each sampling trip may be seen in 

Figures 4.13, 4.15, 4.17, and 4.19.  

On May 9, 2016, total SPM concentrations range from 21.55 to 50.55 mg/L, with 

SPIM concentrations ranging from 8.5 to 11 mg/L. On average, SPIM accounts for 28% 

of the total SPM on May 9, while SPOM represents 72%. On June 19, 2016, total SPM 

concentrations range from 22.25 to 56.25 mg/L, with SPIM concentrations ranging from 

6.5 to 13.25 mg/L. On average, SPIM accounts for only 24% of the total SPM on June 

19, with 76% belonging to the SPOM fraction. On June 26, 2016, total SPM 

concentrations range from 19.5 to 42.25 mg/L, with SPIM concentrations ranging from 7 

to 13 mg/L. On average, SPIM makes up 33% of the total SPM concentration, while 

SPOM accounts for 67%. On September 30, 2016, total SPM concentrations range 

between 42.75 and 85.5 mg/L, while SPIM ranges from 13 to 21.25 mg/L. Out of the 
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total SPM concentrations, SPIM, on average, accounts for 31%, while SPOM accounts 

for 69% 

The relationships between SPM and both SPIM and SPOM may be seen in 

Figures 4.21 and 4.22. A significant linear relationship (p-value = 1.77937*10-44) exists 

between SPOM and total SPM, were R2=0.9579 (n=49). A significant relationship (p-

value = 3.74545*10-24) also exists between SPIM and total SPM, where R2=0.6641 

(n=49). The histogram distribution of both SPM and SPIM may be seen in Figures 4.23 

and 4.24. The SPM concentrations more closely follow a normal distribution curve, while 

the SPIM concentrations have a bimodal distribution with the largest peak at around 10 

mg/L, and a lesser peak at approximately 20 mg/L.  
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Figure 4.13 SPOM, SPIM, and Total SPM Concentrations on May 9, 2016 

 

Figure 4.14 Spatial Variability of Total SPM Concentrations on May 9, 2016 
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Figure 4.15 SPOM, SPIM, and Total SPM Concentrations on June 19, 2016 

 

Figure 4.16 Spatial Variability of Total SPM Concentrations on June 19, 2016 
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Figure 4.17 SPOM, SPIM, and Total SPM Concentrations on June 26, 2016 

 

Figure 4.18 Spatial Variability of Total SPM Concentrations on June 26, 2016 
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Figure 4.19 SPOM, SPIM, and Total SPM Concentrations on September 30, 2016 

 

Figure 4.20 Spatial Variability of Total SPM Concentrations on September 30, 2016 
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Figure 4.21 Relationship between SPOM and Total SPM concentrations for all 
sampling dates. 

 

Figure 4.22 Relationship between SPIM and Total SPM concentrations for all sampling 
dates. 
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Figure 4.23 Histogram plot of SPM Concentrations 

The black line depicts a normal distribution curve. 

 

Figure 4.24 Histogram plot of SPIM Concentrations 

The black line depicts a normal distribution curve.  

 

The multiple sampling trips were compared for statistical differences between the 

measured concentrations of SPM and SPIM. A general linear model univariate analysis 

was run in SPSS software to test the means of the various sampling trips. A Tukey Post 
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Hoc was used to determine which field collection dates varied significantly from one 

another. Both the SPM and SPIM concentrations observed on September 30, 2016 

differed significantly from the three previous sampling trips, as is demonstrated by the 

varying means depicted in Tables 4.1 and 4.2 

Table 4.1 SPM statistics for each sampling trip 

 5/9/2016 6/19/2016 6/26/2016 9/30/2016 

Mean 35.53 43.98 32.29 61.33 

Variance 102.19 90.12 39.98 128.09 

Observations 12 11 13 12 

     

 

Table 4.2 SPIM statistics for each sampling trip 

  5/9/2016 6/19/2016 6/26/2016 9/30/2016 

Mean 9.85 10.54 10.51 18.71 

Variance 0.65 3.63 2.36 7.05 

Observations 12 11 13 12 

 

4.3 SPM and SPIM Retrieval Algorithms  

The Rrs values calculated from the GER 1500 radiometer were used for the 

development and validation of the various SPM and SPIM retrieval algorithms. Lodhi et 

al. (1998), as well as Merritt (2016), demonstrated that the use of field spectrometer data, 

integrated into satellite band widths, allows for accurate estimation of SPM and SPIM.  

4.3.1 Previously Developed Model Results 

Previously developed models for SPM or SPIM retrieval using Rrs were 

evaluated as published in the literature to predict SPM/SPIM concentrations in Weeks 

Bay, as listed in Table 3.2. The R2 and RMSE (% and mg/L) statistics for each model 
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tested is provided in Table 4.3. Models were evaluated using all 48 sampling sites. Only 

Wang et al. (2009) produced an R2 of greater than 0.2 (R2= 0.2203). Han et al. (2006), 

and Kong et al. (2015) produced R2 values of greater than 0.1 (0.1729 and 0.1681 

respectively). With the lowest RMSE (%) of 66.96% (10.04 mg/L) given by Zhao et al. 

(2015), none of the preexisting models were a good fit.  

The previously developed models were adjusted by keeping the defined 

independent variable reflectance parameters, and altering the coefficients by running 

regressions with the Weeks Bay SPM/SPIM data. A total of 49 sites were visited over the 

course of the four sampling trips. Due to the loss of the radiometer data for site 1 on June 

19, 2016, that site was excluded from the modeling process, leaving a total of 48 sites. 

Thirty-two of the 48 sites were used to develop the new coefficients, while 16 sites were 

used for the validation of the adjusted models. The R2 and RMSE statistics, as well as the 

adjusted model, are provided in Table 4.4. All models improved when the coefficients 

were adjusted specifically for Weeks Bay. The algorithm developed by Kong et al. 

(2015a) produced the highest R2 value with R2 = 0.5173. All other algorithms yielded an 

R2 of less than 0.25. The RMSE (%) values given by the adjusted models were all under 

40%, with the lowest RMSE of 13.67% (1.74 mg/L) being yielded by Kong et al. 

(2015a). The model by Kong et al. (2015a) uses a ratio of the red and green bands to 

determine the SSC using a second order polynomial algorithm.   
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4.3.2 SPM Retrieval Algorithm Results 

Once the previous models for SPM were tested and modified, the previously 

utilized variables were modified to consider alternative formula types. Additional 

possible reflectance parameters and algorithm forms were then tested as potential 

variables in a Weeks Bay SPM retrieval algorithm. These reflectance parameters include 

single bands, the natural logs of single bands, band ratios, band combinations, and 

combinations of the previously listed. Both a linear, and nonlinear model were tested for 

each variable- those previously used in SPM models, and those not.  The equations for 

each tested model, as well as the associated statistics may be seen in Table 4.5 for the 

previously utilized variables, and Table 4.6 for the additionally tested variables. Three 

out of the 29 reflectance parameters tested as possible variables in a linear model were 

significant (p<0.05). This included Band 4/Band 3, Ln(Band 4)/Ln(Band 3), and (Band 3 

– Band 5)/(Band 3 + Band 5) with p-values of 0.0070, 0.0055, and 0.0489 respectively. 

The RMSE (%) reported for each of these statistically significant linear models were 

26.48%, 25.89%, and 27.23% respectively. None of these predictive variables produce a 

Pearson Correlation of R > 0.8. The nonlinear models for Band 4/Band 3, Ln(Band 

4)/Ln(Band 3), and (Band 3 – Band 5)/(Band 3 + Band 5) resulted in R2 values of 0.4644, 

0.4827, and 0.3032 with RMSE (%) values of 21.70%, 18.78%, and 139.02% 

respectively. None of the nonlinear models have a significant Pearson correlation 

coefficient. 

With the development and validation of (Band 3 – Band 5)/(Band 3 + Band 5) as 

a possible variable in an SPM retrieval algorithm, both Sites 1 and 2 from May 9, 2016 

may be removed as outliers. With the removal of these sites, the linear algorithm using 
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the (Band 3 – Band 5)/(Band 3 + Band 5) variable improves in performance to an R2 of 

0.2131, p-value of 0.0089, and RMSE (%) of 23.34%. The nonlinear algorithm improves 

in performance to an R2 of 0.4744, and RMSE (%) of 17.65%. The Pearson correlation 

coefficient was significant and positive (R=0.8).  

A multiple regression was also considered as a potential for modeling SPM 

concentrations in Weeks Bay, however due to the high degree of correlation between the 

Landsat-8 band Rrs values (Table 4.7), a multiple regression was not valid.  
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Table 4.7 Correlation between Landsat-8 bands 

 
All Landsat-8 bands were highly correlated. 

Band 1 Band 2 Band 3 Band 8 Band 4 Band 5

Band 1 1

Band 2 0.994987 1

Band 3 0.968141 0.987194 1

Band 8 0.973186 0.990486 0.999694 1

Band 4 0.969741 0.980501 0.977562 0.97804 1

Band 5 0.865941 0.829541 0.75795 0.765538 0.853616 1

 

 Given the statistical variability between SPM concentrations during the separate 

field cruises, numerous possible reflectance parameters were tested as potential variables 

in a Weeks Bay SPM algorithm for each sampling trip on an individual basis. The tested 

algorithms and associated statistics may be found in Tables 4.8, 4.9, 4.10, and 4.11. Four 

sites were reserved from each sampling trip for validation of the algorithms. Eight sites 

were used for the development of May 9 and September 30, while seven sites were used 

for the development of June 19 and nine for June 26.  

 The relationship between the reflectance parameters and SPM concentrations 

improves when observed on a trip-by-trip basis for the May 9 and September 30, 2016 

sampling trips. Out of the 12 reflectance parameters analyzed for a relationship with SPM 

concentrations on May 9, 2016, 10 of the linear equations had a reported p-value of 0.05 

or less. Out of those 10 reflectance parameters, 8 had both a linear and nonlinear 

relationship with a Pearson correlation coefficient of 0.8 or greater, with a 9th parameter, 

Ln(Band 1), having a strong Pearson coefficient reported for only the linear model. Out 

of these reflectance parameters, the lowest RMSE and highest R2 was reported as 22.74% 

(5.12 mg/L) and R2=0.9310 for the second order polynomial equation associated with the 
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variable Ln(Band 3). Out of the 12 reflectance parameters analyzed for a relationship 

with SPM concentrations on September 30, 2016, 6 had a reported p-value of 0.05 or less 

associated with the linear relationship. All of those 6 reflectance parameters had both a 

linear and nonlinear relationship with a strong Pearson correlation coefficient of 0.8 or 

greater. Out of the significant reflectance parameters, the lowest RMSE of 13.18% (3.16) 

was reported for the second order polynomial equation using Band 2 as the predictive 

variable. The highest R2 of 0.6616 was reported with the second order polynomials 

associated with both Band 1 and Ln(Band 1).  

 The relationships between the various reflectance parameters and SPM 

concentrations for the two June 2016 sampling trips are not strong like with the May and 

September sampling trips. Neither the June 19 nor June 26 trips reveal any significant p-

values for any of the 12 reflectance parameters analyzed. Similarly, neither the June 19 

nor June 26 trips produce a strong Pearson correlation coefficient for any of the 

reflectance parameters tested.  
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Table 4.8 Statistics of single bands and band combinations for the May 9, 2016 
sampling trip using 8 sites for development and 4 sites for validation 

 

 

Reflectance Parameter Relationship with SPM R2
p-value F t R RMSE (%) RMSE in mg/L

Band 5 y = 467.69x + 32.296 0.505 0.05 0.46 0.02 0.98 48.81% 10.98

y = -21291x2 + 1505x + 25.705 0.6052 0.66 0.01 0.94 54.08% 12.17

Band 4 y = 651.15x + 23.207 0.7388 0.01 0.60 0.05 0.97 30.18% 6.79

y = -26645x
2
 + 2223.4x + 4.2309 0.8707 0.94 0.08 0.95 23.52% 5.29

Band 3 y = 690.17x + 21.391 0.7735 0.00 0.78 0.02 0.98 37.14% 8.36

y = -27294x2 + 2331.1x + 0.5933 0.9025 0.97 0.12 0.96 19.91% 4.48

Band 2 y = 613.18x + 27.435 0.677 0.01 0.88 0.00 0.98 39.64% 8.92

y = -31901x
2
 + 2238x + 12.518 0.8439 0.99 0.03 0.95 31.86% 7.17

Band 1 y = 553.13x + 29.707 0.614 0.02 0.63 0.01 0.98 42.45% 9.55

y = -30595x2 + 2076.1x + 17.516 0.7864 0.98 0.02 0.93 41.88% 9.42

Ln(Band 1) y = 12.217x + 91.655 0.7819 0.00 0.92 0.03 0.92 40.62% 9.14

y = -8.4907x2 - 57.175x - 46.408 0.8908 0.74 0.21 0.75 45.79% 10.30

Ln(Band 2) y = 14.248x + 97.943 0.8317 0.00 0.94 0.02 0.95 34.55% 7.77

y = -9.3064x2 - 59.987x - 47.102 0.9215 0.77 0.25 0.84 34.75% 7.82

Ln(Band 3) y = 19.605x + 112.63 0.8821 0.00 0.75 0.06 0.97 28.83% 6.49

y = -11.282x2 - 63.934x - 40.131 0.931 0.78 0.30 0.93 22.74% 5.12

Ln(Band 4) y = 18.035x + 107.91 0.8519 0.00 0.90 0.07 0.95 24.11% 5.42

y = -11.09x
2
 - 64.916x - 45.042 0.9081 0.84 0.37 0.90 24.18% 5.44

Ln(Band 5) y = 8.6957x + 78.865 0.5797 0.03 0.20 0.32 0.00 54.30% 12.22

y = -0.2821x2 + 6.2809x + 73.885 0.58 0.22 0.32 0.01 54.53% 12.27

Band 4 / Band 5 y = -3.2724x + 46.25 0.105 0.43 0.37 0.38 -0.87 72.05% 16.21

y = 5.1299x
2
 - 29.566x + 76.175 0.3765 1.00 0.01 0.86 79.73% 17.94

Band 4 / Band 3 y = 131.49x - 84.493 0.2821 0.18 0.62 0.93 -0.90 94.80% 21.33

y = 2961.9x2 - 5457.2x + 2548.2 0.4625 0.02 0.22 0.97 257.13% 57.85

  



www.manaraa.com

 

79 

Table 4.9 Statistics of single bands and band combinations for the June 19, 2016 
sampling trip using 7 sites for development and 4 sites for validation 

 

Reflectance Parameter Relationship with SPM R2 p-value F t R RMSE (%) RMSE in mg/L

Band 5 y = 551.14x + 36.06 0.1433 0.40 0.04 0.28 -0.38 59.20% 9.62

y = 119755x
2
 - 2083.5x + 45.5 0.2651 0.06 0.12 -0.40 77.61% 12.61

Band 4 y = 485.27x + 33.55 0.1142 0.46 0.02 0.22 -0.15 59.00% 9.59

y = 58103x2 - 1536x + 48.619 0.165 0.01 0.14 -0.33 68.47% 11.13

Band 3 y = 520.97x + 32.354 0.1406 0.41 0.05 0.22 -0.16 60.88% 9.89

y = 38973x2 - 945.92x + 44.349 0.1652 0.03 0.17 -0.31 66.55% 10.81

Band 2 y = 565.03x + 34.173 0.1727 0.35 0.08 0.22 -0.17 61.85% 10.05

y = 64571x
2
 - 1276.9x + 44.174 0.2156 0.04 0.15 -0.43 71.17% 11.56

Band 1 y = 609.38x + 34.569 0.2001 0.31 0.12 0.23 -0.14 62.38% 10.14

y = 55490x2 - 813.85x + 40.993 0.2257 0.05 0.16 -0.38 69.80% 11.34

Ln(Band 1) y = 5.5022x + 67.302 0.15 0.39 0.08 0.26 -0.04 57.34% 9.32

y = 7.3008x
2
 + 74.321x + 226.22 0.2363 0.17 0.18 -0.25 69.74% 11.33

Ln(Band 2) y = 5.809x + 67.698 0.1261 0.43 0.05 0.26 -0.10 57.55% 9.35

y = 9.8447x2 + 95.175x + 267.17 0.2192 0.13 0.17 -0.27 70.50% 11.46

Ln(Band 3) y = 5.809x + 67.698 0.1261 0.46 0.01 0.42 -0.10 49.79% 8.09

y = 9.8447x2 + 95.175x + 267.17 0.2192 0.19 0.36 -0.17 57.55% 9.35

Ln(Band 4) y = 6.3867x + 68.36 0.0824 0.53 0.01 0.25 -0.10 56.32% 9.15

y = 15.739x
2
 + 139.92x + 348.65 0.1639 0.04 0.15 -0.23 68.09% 11.07

Ln(Band 5) y = 3.1187x + 56.86 0.0686 0.57 0.01 0.30 -0.37 54.82% 8.91

y = 6.65x2 + 70.015x + 220.64 0.2151 0.14 0.20 -0.37 69.80% 11.34

Band 4 / Band 5 y = -1.7881x + 45.577 0.0266 0.73 0.00 0.31 -0.66 53.62% 8.71

y = 4.9296x
2
 - 26.306x + 71.688 0.1266 0.08 0.38 -0.65 60.39% 9.81

Band 4 / Band 3 y = -98.865x + 133.88 0.1215 0.44 0.33 0.14 -0.09 75.84% 12.32

y = -11682x2 + 21342x - 9688.4 0.8966 0.01 0.23 0.15 341.41% 55.48
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Table 4.10 Statistics of single bands and band combinations for the June 26, 2016 
sampling trip using 9 sites for development and 4 sites for validation 

 

Reflectance Parameter Relationship with SPM R2
p-value F t R RMSE (%) RMSE in mg/L

Band 5 y = 231.19x + 32.579 0.0642 0.51 0.03 0.22 0.30 50.59% 7.08

y = 51.527x0.0763 0.1412 0.20 0.27 0.33 47.40% 6.64

Band 4 y = 607.86x + 28.017 0.1354 0.33 0.07 0.23 0.50 46.44% 6.50

y = -201536x
2
 + 5722x + 0.0553 0.3244 0.82 0.23 0.64 41.88% 5.86

Band 3 y = 820.96x + 24.985 0.1903 0.24 0.12 0.25 0.50 44.76% 6.27

y = -254909x2 + 7562.2x - 15.635 0.4253 0.86 0.32 0.62 39.92% 5.59

Band 2 y = 445.05x + 30.837 0.0924 0.43 0.05 0.24 0.33 49.00% 6.86

y = -116804x
2
 + 2836.4x + 21.907 0.174 0.46 0.27 0.36 48.41% 6.78

Band 1 y = 337.96x + 31.832 0.0745 0.48 0.04 0.23 0.28 49.98% 7.00

y = 60.915x0.1126 0.1429 0.22 0.33 0.25 47.07% 6.59

Ln(Band 1) y = 3.3367x + 51.711 0.1243 0.35 0.16 0.27 0.25 48.90% 6.85

y = -4.9484x2 - 46.653x - 72.223 0.2172 0.39 0.43 0.17 47.50% 6.65

Ln(Band 2) y = 4.745x + 58.176 0.1442 0.31 0.17 0.26 0.36 47.23% 6.61

y = -8.3364x2 - 76.59x - 137.89 0.2511 0.45 0.35 0.44 42.86% 6.00

Ln(Band 3) y = 11.787x + 87.638 0.2592 0.16 0.26 0.26 0.55 42.06% 5.89

y = -27.585x2 - 233.36x - 454.92 0.4258 0.72 0.28 0.72 34.69% 4.86

Ln(Band 4) y = 8.4511x + 73.58 0.1978 0.23 0.21 0.22 0.58 43.39% 6.07

y = -19.105x
2
 - 164.55x - 315.71 0.3536 0.72 0.20 0.77 34.66% 4.85

Ln(Band 5) y = 2.264x + 46.766 0.1232 0.35 0.14 0.23 0.33 49.35% 6.91

y = -2.0676x2 - 19.684x - 9.4838 0.1925 0.17 0.26 0.39 46.75% 6.54

Band 4 / Band 5 y = -1.1896x + 37.665 0.1047 0.40 0.09 0.24 0.13 51.85% 7.26

y = -0.5087x
2
 + 1.935x + 34.112 0.127 0.03 0.25 -0.19 54.02% 7.56

Band 4 / Band 3 y = 13.714x + 21.834 0.0188 0.73 0.01 0.20 0.66 50.22% 7.03

y = 377.71x2 - 668.45x + 328.22 0.0792 0.02 0.29 -0.70 55.30% 7.74
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Table 4.11 Statistics of single bands and band combinations for the September 30, 
2016 sampling trip using 8 sites for development and 4 for validation 

 

Reflectance Parameter Relationship with SPM R2
p-value F t R RMSE (%) RMSE in mg/L

Band 5 y = 10417x + 43.191 0.3468 0.12 0.45 0.04 0.96 38.07% 9.14

y = -3E+07x2 + 156511x - 118.42 0.8642 0.19 0.55 0.94 59.03% 14.17

Band 4 y = 5268.4x + 30.343 0.4416 0.07 0.85 0.05 0.83 46.39% 11.13

y = -1E+06x
2
 + 20929x - 23.328 0.4507 0.62 0.04 0.87 60.38% 14.49

Band 3 y = 4623.9x + 21.66 0.5928 0.03 0.45 0.13 0.99 23.52% 5.65

y = 435123x2 - 4097.2x + 64.011 0.6027 0.15 0.19 0.98 32.81% 7.87

Band 2 y = 8204.7x + 33.504 0.5698 0.03 0.39 0.13 0.96 27.76% 6.66

y = -3E+06x
2
 + 32067x - 13.523 0.6 0.81 0.21 0.97 13.18% 3.16

Band 1 y = 11318x + 35.919 0.6362 0.02 0.32 0.20 0.95 27.12% 6.51

y = 933.84x0.446 0.6616 0.42 0.20 0.96 24.19% 5.80

Ln(Band 1) y = 29.741x + 243.42 0.6414 0.02 0.53 0.17 0.96 22.05% 5.29

y = 933.84e0.446x 0.6616 0.42 0.20 0.96 24.19% 5.80

Ln(Band 2) y = 33.668x + 253.15 0.5903 0.03 0.62 0.10 0.97 21.82% 5.24

y = -25.482x2 - 248.3x - 525.53 0.6031 0.97 0.10 0.97 15.18% 3.64

Ln(Band 3) y = 45.039x + 275.97 0.5823 0.03 0.67 0.09 0.98 18.46% 4.43

y = 41.921x2 + 433.55x + 1174.9 0.5935 0.24 0.16 0.99 30.25% 7.26

Ln(Band 4) y = 37.029x + 251.64 0.4463 0.07 1.00 0.05 0.85 43.73% 10.50

y = -22.679x
2
 - 188.51x - 308.28 0.4483 0.83 0.06 0.88 40.80% 9.79

Ln(Band 5) y = 26.228x + 227.63 0.4197 0.08 0.76 0.02 0.96 32.20% 7.73

y = -136.82x2 - 1643.2x - 4855.4 0.791 0.15 0.81 0.92 65.46% 15.71

Band 4 / Band 5 y = -14.764x + 112.27 0.1929 0.28 0.87 0.40 0.35 47.19% 11.33

y = -46.156x
2
 + 276.73x - 343.92 0.3808 0.12 0.50 0.01 125.26% 30.06

Band 4 / Band 3 y = -65.487x + 110.83 0.0416 0.63 0.85 0.62 -0.38 62.29% 14.95

y = -2594.4x2 + 3614x - 1191.1 0.0914 0.00 0.47 -0.28 508.11% 121.95

 

4.3.3 SPIM Retrieval Algorithm Results 

Once the previous models for SPIM were tested and modified, the previously 

utilized variables were modified to consider alternative formula types. Additional 

possible reflectance parameters and algorithm forms were then tested as potential 

variables in a Weeks Bay SPIM retrieval algorithm.  These reflectance parameters 

include single bands, the natural logs of single bands, band ratios, band combinations, 

and combinations of the previously listed. Both a linear, and nonlinear model were tested 

for each reflectance parameter.  The equations for each tested model, as well as the 

associated statistics may be seen in Table 4.12 for the previously utilized variables, and 

Table 4.13 for the new variables. 
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The reflectance parameters produced much more significant results when being 

related to SPIM, opposed to SPM. Out of the 29 reflectance parameters tested as possible 

predictive variables in a SPIM retrieval algorithm for Weeks Bay, 25 were significant 

(p<0.05). Out of the 25 variables statistically significant p-values, only two reflectance 

parameters produced linear algorithms with a significant Pearson correlation coefficient 

(R≥0.8). Similarly, only three variables produced nonlinear algorithms with a significant 

Pearson correlation coefficient (R≥0.8). 

Both the linear and non-linear algorithms for Band 4/Band 3 and Ln(Band 

4)/Ln(Band 3), and the nonlinear algorithm for (Band 3 – Band 5)/(Band 3 + Band 5) had 

strong Pearson correlation coefficients, such that the linear algorithms had reported R 

values of 0.83, and 0.84 respectively, and the nonlinear algorithms had reported R values 

of 0.90, 0.90, and 0.84 respectively. The linear algorithms for Band 4/Band 3, and 

Ln(Band 4)/Ln(Band 3) had RMSE (%) of 17.48% (2.23 mg/L), and 18.84% (2.40 mg/L) 

respectively. The nonlinear algorithms for Band 4/Band 3, Ln(Band 4)/Ln(Band 3), and 

(Band 3 – Band 5)/(Band 3 + Band 5) were 12.95% (1.65 mg/L), 12.50% (1.59 mg/L), 

and 18.60% (2.37 mg/L) respectively. The R2 increase significantly between the linear 

and nonlinear algorithms for each significant band. The R2 value increases from 0.2619 

to 0.5250 for Band 4/Band 3 when the equation is changed from a simple linear equation 

into a third order polynomial, while the R2 value increases from 0.2046 to 0.6504 for 

Ln(Band 4)/Ln(Band 3) when the equation is changed from a simple linear equation into 

a third order polynomial.  

With the development and validation of (Band 3 – Band 5)/(Band 3 + Band 5) as 

a possible variable in an SPIM retrieval algorithm, both Sites 1 and 2 from May 9, 2016 
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may be removed as outliers. With the removal of these sites, the linear algorithm using 

the (Band 3 – Band 5)/(Band 3 + Band 5) variable improves in performance to an R2 of 

0.0384 to 0.1951, a p-value of 0.28241 to 0.01, and RMSE (%) of 28.02% to 19.39%. 

The nonlinear algorithm improves in performance to an R2 of 0.2103 to 0.6444, RMSE 

(%) of 18.60% to 12.85, and R of 0.85 to 0.90.  

Plots for the predicted SPIM concentrations derived from each of the three 

significant linear models versus the in situ SPIM concentrations may be seen in Figures 

4.25, 4.27, and 4.29. Plots for the predicted SPIM concentrations derived from each of 

the three significant nonlinear models versus the in situ SPIM concentrations may be seen 

in Figures 4.26, 4.28, and 4.30. Figure 4.35 and 4.36 depicts the results from the (Band 3 

– Band 5)/(Band 3 + Band 5) variable with the removal of May 9, 2016 Sites 1 and 2 

removed from the development and validation.  
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Figure 4.25 Predicted SPIM based on the developed linear model using Band 4/Band 3 
as the predictive variable.  

Based on the linear equation using the variable Band 4/Band 3 as depicted in Table 4.12. 
The solid line depicts a 1:1 relationship, while the dashed line represents the linear trend. 
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Figure 4.26 Predicted SPIM based on the developed nonlinear model using Band 4 
/Band 3 as the predictive variable.  

Based on the nonlinear mode using Band 4/Band 3 as the predictive variable as presented 
in Table 4.12. The solid line depicts a 1:1 relationship, while the dashed line represents 
the linear trend.  
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Figure 4.27 Predicted SPIM based on the developed linear model using Ln(Band 
4)/Ln(Band 3) as the predictive variable. 

Based on the linear equation using the variable Ln(Band 4)/Ln(Band 3) as depicted in 
Table 4.13. The solid line depicts a 1:1 relationship, while the dashed line represents the 
linear trend. 
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Figure 4.28 Predicted SPIM based on the developed nonlinear model using Ln(Band 
4)/Ln(Band 3)  as the predictive variable.  

Based on the nonlinear equation using the variable Ln(Band 4)/Ln(Band 3) as depicted in 
Table 4.13. The solid line depicts a 1:1 relationship, while the dashed line represents the 
linear trend.  

 

Figure 4.29 Predicted SPIM based on the developed linear model using (Band 3 – Band 
5)/(Band 3 + Band 5) as the predictive variable.  

Based on the linear equation using the variable (Band 3-Band 5)/(Band 3+Band 5). The 
solid line depicts a 1:1 relationship, while the dashed line represents the linear trend. This 
equation was developed and validated with the removal of May 9, 2016 Sites 1 and 2. 
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Figure 4.30 Predicted SPIM based on the developed nonlinear model using (Band 3 – 
Band 5)/(Band 3 + Band 5)  as the predictive variable.  

Based on the nonlinear equation using the variable (Band 3 – Band 5)/(Band 3 + Band 5). 
The solid line depicts a 1:1 relationship, while the dashed line represents the linear trend. 
This equation was developed and validated with the removal of May 9, 2016 Sites 1 and 
2. 

4.4 Simulation Results 

 A semi-analytical simulation approach was used to determine the contribution of 

Rrs from the various OACs present in Weeks Bay, particularly from SPM alone. For 

Equation 3.5, the bbw values were derived from those published by Smith and Baker 

(1981). Smith and Baker (1981) derived the scattering coefficients for both fresh and 

saltwater between 200 and 800 nm. Weeks Bay is a brackish estuary, with an average 

salinity of 4.69‰ recorded by the NERR Weeks Bay water quality station between May 

and September 2016 (NERRS). Being a brackish water estuary, it is neither suitable to 

use the pure freshwater, nor the pure saltwater (35-39‰) coefficients as determined by 

Smith and Baker (1981). An average of the fresh and saltwater backscattering 

coefficients was used to represent the brackish water of Weeks Bay. Figure 4.25 
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demonstrates the limited variation between the simulated Rrs results using the various 

backscattering coefficients. The average variation in the simulated Rrs values between 

using the fresh water, ocean water, or averaged bbw coefficients was 5.25x10-6 sr-1.  The 

aw values used in the simulation approach were taken from Mueller et al. (2003). The bbp, 

values were determined for each site using the procedure described in Section 3.1.4. The 

acdom values were determined using the procedure described in Section 3.2.2. PC 

concentrations were derived using the procedure described in Section 3.2.3. To obtain apc, 

the PC concentrations for each site were multiplied by the specific absorption coefficient 

of PC as determined by Dash et al. (2011). The aNAP and aChla were determined using the 

procedure described in Section 3.2.4.  
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Figure 4.31 Simulated Rrs results at site 1 on May 9, 2016 using various bbw 
coefficients 

The simulated Rrs results at site 1 on May 9, 2016 using the backscattering coefficients 
of for pure fresh and ocean water derived by Smith and Baker (1981), as well as using an 
average of both the fresh and ocean water coefficients. 

 

The Rrs simulation created for Weeks Bay presents modeled spectra curves that 

generally coincide with the spectra curves observed by the in situ radiometer data. While 

the spectra curves of the simulated Rrs match those observed by the radiometer, the 

magnitude of the simulated Rrs values tend to be low. Once the total Rrs was simulated 

using Equation 4.1, the equation was modified to determine the Rrs when there is no 

SPM present. By removing the absorption coefficients of the OACs that make up SPM 

including chlorophyll (Chl a and PC) and mineral particulates (NAP) (Gohin, 2011), the 

following equation may be derived: 

 𝑅𝑟𝑠𝑆𝑃𝑀=0 = 0.54 (
𝑓

𝑄
) (

𝑏𝑏𝑤+𝑏𝑏𝑝

(𝑎𝑤+𝑐𝑑𝑜𝑚)+(𝑏𝑏𝑤+𝑏𝑏𝑝)
). (4.1) 
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By removing the absorption of NAP, Chl a, and PC, the simulated Rrs values 

increase from the simulated total Rrs values, as depicted for May 9, 2016 Site 1 in Figure 

4.26. To obtain the Rrs of SPM alone, the Rrs values determined for SPM=0 were 

subtracted from the total Rrs values. This was done using both the simulated total Rrs and 

radiometer Rrs values. The resultant Rrs values for SPM alone often resulted in negative 

values (Figure 4.26).  

Similarly, using Equation 4.1, the equation was modified to determine the Rrs 

when there is no SPIM present. By removing the absorption coefficients of the OACs that 

make up SPIM (NAP) (Gohin, 2011), the following equation may be derived: 

 𝑅𝑟𝑠𝑆𝑃𝐼𝑀=0 = 0.54 (
𝑓

𝑄
) (

𝑏𝑏𝑤+𝑏𝑏𝑝

(𝑎𝑤+𝑐𝑑𝑜𝑚+𝑎𝑐ℎ𝑙𝑎+𝑎𝑝𝑐)+(𝑏𝑏𝑤+𝑏𝑏𝑝)
) (4.2) 

By removing the absorption of NAP alone, the simulated Rrs values increase from 

the simulated total Rrs values. In 43 out of the 48 sites, the Rrs value increase is not as 

great as when NAP, Chl a, and PC are removed. To obtain the Rrs of SPIM alone, the Rrs 

values determined for SPIM=0 were subtracted from the total Rrs values. This was done 

using both the simulated total Rrs and radiometer Rrs values. The resultant Rrs values for 

SPIM are greater than those for SPM (Figure 4.26).  
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Figure 4.32 Semi-Analytical Simulation Results for May 9, 2016 Site 1 

 

4.5 Precipitation Data 

Meteorological data was downloaded for the entire field sampling season, from 

May to September 2016, for the Safe Harbor Met Station, looking at the Weeks Bay 

NERR.  
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Figure 4.33 Precipitation in Weeks Bay from May to September 2016 
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CHAPTER V 

DISCUSSION 

5.1 In Situ Measurements 

5.1.1 Field Measurements 

The pH of estuarine waters typically range between 7.0 and 7.5 in lower salinities, 

and between 8.0 and 8.6 in the more saline portions (Ohrel & Register, 2006). Pure 

seawater has a pH average of 8.0 (Ohrel & Register, 2006). Estuarine organisms prefer 

pH values between 6.5 and 8.5 (Ohrel & Register, 2006). Most aquatic organisms may 

survive in waters with a pH between 5.0 and 9.0, with the values less than 7 being 

slightly acidic, and those above 7 being slightly basic (Ohrel & Register, 2006; NOAA, 

2008). Algal blooms may cause dramatic fluctuations in pH over short periods of time, 

stressing other aquatic organisms. The range of pH values in Weeks Bay between 7.28 

and 8.99 fall within the range of acceptable values for aquatic organisms (Figure 4.6). 

The average pH values increased with each consecutive field cruise, with average pH 

values of 7.97, 8.16, 8.59, and 8.67 respectively for the May 9, June 19, June 26, and 

September 30, 2016 sampling trips.  

Salinity levels vary throughout the estuary depending on the location. Salinity 

levels will typically be higher near the mouth of the estuary, which serves as the source 

of saline water, and lower near the freshwater input, such as a river. Pure seawater has a 

salinity of around 35 parts per thousand (ppt), while pure water contains <0.5 ppt 
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(NOAA, 2008). Estuarine salinity levels may range anywhere between 0.5 and 30.0 ppt 

(Orthel & Register, 2006). Salinity has an important role with suspended sediment by 

causing particle aggregation, otherwise known as flocculation (Orthel & Register, 2006). 

June 19, June 26, and September 30, 2016 generally increase in salinity as the sample 

sites move closer to the mouth of Weeks Bay, and the source of seawater. Salinity levels 

in Weeks Bay ranged between 0.42 and 22.98 PSU during the four field cruises (Figure 

4.7). The average measured salinity was 3.32, 9.05, 8.19, and 15.10 PSU respectively for 

the May 9, June 19, June 26, and September 30, 2016 sampling trips. The June 19, June 

26, and September 30 field cruises demonstrated an increase in salinity as sampling 

moved south, towards the mouth of Weeks Bay, as would be expected. On May 9, 2016, 

the highest salinity value was found at site 4, located at the northern portion of the bay. 

Weeks Bay receives its source of saline water from Mobile Bay, which is also an estuary 

with its own fluctuating salinity values. Previous field cruises in Weeks Bay 

demonstrated significant variations both temporally and spatially (Miller-Way et al., 

1996). The observed variability is due to flashy local runoff from the Fish and Magnolia 

Rivers, as well as from exchanges with the variable salinity of regime of Mobile Bay 

(Miller-Way et al., 1996).  

The National Oceanographic Data Center (NODC) has reported water 

temperature averages that peak in July and reach a minimum in January for the Mobile 

Bay region (NODC, 2017). Water temperatures in Weeks Bay were coolest on May 9, 

2016 with an average water temperature of 25.60 ℃. Temperatures were slightly warmer 

on June 19, 2016 with an average of 29.23 ℃, reaching a peak on June 26, 2016 with an 

average water temperature of 31.09. Water temperatures declined to an average of 26.24 
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℃ on September 30, 2016. This reflects the trends reported for the Mobile Bay by 

demonstrating a peak in late June.  

DO levels are influenced by both temperature and salinity, varying seasonally 

with the highest values typically found in the late summer when temperatures are 

typically the highest (NOAA, 2008). The DO levels observed in Weeks Bay fail to 

exhibit this typical seasonal variability, by peaking on May 9, 2016 with an average DO 

value of 5.12 ppm when temperatures were the lowest. The lowest DO values were 

recorded on September 30, 2016 with an average value of 0.34 ppm. June 19 and June 26, 

2016 reported average DO values of 1.48 and 1.38 ppm respectively. Aquatic organisms 

must have adequate DO levels in order to survive, making DO one of the best indicators 

of estuarine health (Ohrel & Register, 2006). In order for most aquatic organisms to 

function unimpaired, DO levels must typically exceed 5 ppm (Ohrel & Register, 2006). 

DO levels between 3 and 5 ppm may cause aquatic organisms to become stressed and is 

known as hypoxia, while levels below 3 ppm, otherwise known as anoxia, will force 

organisms to either move to new waters or perish (Orthel & Register, 2006). Only sites 4, 

8, and 11 recorded on May 9, 2016 were above 5 ppm, and therefore at a level suitable 

for aquatic organisms to function unimpaired. Sites 1, 5, 6, 9, 10, and 12 on May 9, 2016 

fell within the hypoxic range. The remaining three sites from May 9, 2016, and all sites 

from June 19, June 26, and September 30, 2016 fall within the anoxic range.  

The Weeks Bay NERR contains four water quality sampling stations that record 

data continuously at 15 minute intervals. Out of those four water quality stations, only the 

Fish River water quality station has reported DO values that are neither missing nor 

flagged as suspect for all dates of collection. The Weeks Bay water quality station 



www.manaraa.com

 

101 

produced DO values for May 9, but none of the other collection dates. With the removal 

of suspect values, May 9 has a reported average DO of 8.66 ppm, June 19 has a reported 

average DO of 7.62 ppm, June 26 has a reported average DO of 6.68 ppm, and September 

30 has a reported average DO of 0.94 ppm. The reported values of the NERR water 

quality stations indicate that the DO sensor of the Hanna instrument used during the field 

sampling trips for this project was invalid and produced erroneous results. The reported 

DO values by the NERR water quality stations, for all but the September 30 sampling 

trip, are over 5 ppm and therefore of healthy levels for aquatic life 

5.1.2 Spectroradiometer Reflectance Values 

The Rrs spectra of all 48 sites may be seen in Figures 4.9, 4.10. 4.11, and 4.12. 

The curves of a standard reflectance curve in algae-laden water may be seen in Figure 

5.3. A majority of the field radiometer Rrs curves depict similar peaks to those in the 

standard reflectance curve. A peak is commonly present in the green portion of the EMS 

due to the lower absorption, and higher reflection of green light caused by algae (Jenson, 

2006). Additionally, visible in the hyperspectral in situ reflectance curves, is a peak 

around 700 nm due to increased chlorophyll reflectance, and minimal pigment and water 

absorption (Jenson, 2006). In the standard reflectance curve, reflectance increases as 

SPM concentrations increase (Jenson, 2006). As depicted in Figures 5.3 and 5.4, this 

relationship was not consistently true with the SPM and SPIM concentrations of Weeks 

Bay. With SPM concentrations, the highest SPM concentrations were found to generally 

coincide with the lowest Rrs values (Figure 5.1). This is most likely due to the abundance 

of organic material comprising the SPM concentrations, therefore increasing the 
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absorption of the samples. Similarly, the highest SPIM concentrations resulted in the 

lowest Rrs (Figure 5.2).  

The sites that fail to produce the expected reflectance curves, such as May 9, 2016 

site 10 and June 26, 2016 site 13, display the highest SPM and SPOM concentrations for 

the corresponding sampling trips. The unexpected spectra curves could in part be due to 

the high concentrations of particulate matter. Additionally, these sites could have 

experienced sun glint. Sun glint occurs when sunlight is reflected off the surface water at 

the same angle that the sensor is viewing the surface water.  

The Rrs values are mostly low values, with only 10 sites with Rrs values greater 

than 0.2 sr-1. Out of those 10 sites, only 3 sites have Rrs values greater than 0.3 sr-1. The 

lowest Rrs value occurred in Landsat-8 band 5 with a value of 0.001333 sr-1. The 

maximum Rrs value occurred in Landsat-8 band 3 with a value of 0.050529 sr-1.  
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Figure 5.1 Spectral variation of Rrs (sr-1) averaged over categories of SPM 
concentrations 

 

Figure 5.2 Spectral variation of Rrs (sr-1) averaged over categories of SPIM 
concentrations 
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Figure 5.3 Standard reflectance spectra for clear and algae-laden waters. 

Source: (Jenson, 2006).  

5.2 Lab Procedures 

5.2.1 SPM Concentrations 

SPM concentrations are measured to include both the organic (SPOM) and 

inorganic (SPIM) components. 48 in situ SPM concentrations were collected over the 

course of four sampling trips. Only site 12 on 9/30/2016, located at the mouth of Weeks 

Bay in Mobile Bay, exceeded 75 mg/L, with a concentration of 85.5 mg/L. All of the 
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September 30, 2016 sample sites had an SPM concentration above the 50th percentile, 

with the lowest SPM concentration being 42.75 mg/L at site 1, located at the mouth of the 

Fish River. The lowest SPM value occurred at site 2 on 6/26/2016, located in the northern 

portion of the bay, with a concentration of 19.5 mg/L.  

Figures 4.13, 4.15, 4.17, and 4.19 depict the relationship between total SPM, 

SPOM, and SPIM for each field cruise. SPOM accounts for 71% of the total SPM, while 

SPIM accounts for only 29%. Total SPM exhibits positive correlation with both SPOM 

and SPIM. The total SPM concentrations more closely follows the SPOM concentrations 

with an R2 value of 0.9579, while the relationship of total SPM with SPIM produces an 

R2 of 0.6641 (Figures 4.21 and 4.22). SPOM consists primarily of phytoplankton, while 

SPIM is comprised of inorganic particulates of various sizes, shapes, and mineral 

compositions (Binding et al., 2005). Depending on the severity of tidal influences and 

river discharge, different inorganic particulates will be suspended in varying 

concentrations. The Weeks Bay estuary bottom is made up of primarily silty clay, with a 

section of clayey-silt in the northern tip, and clayey-sand by the mouth of the bay (Miller-

Way et al., 1996). The shorelines are comprised of a quartz sand that is a result of 

shoreline erosion (Miller-Way et al., 1996).  

The May 9, 2016 sampling trip SPM and SPIM concentrations were statistically 

similar to the June sampling trips, while the September 30, 2016 sampling trip differed 

significantly. On both the May 9 and June 26, 2016 collection date, a small amount 

precipitation of precipitation (<0.6) was recorded prior to collection (Figure 4.36). The 

similarity of the day of collection precipitation on May 9 and June 26, 2016 may be a 

possible explanation for their statistically similarity in SPM concentrations. June 26 and 
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September 30, 2016 did not receive any precipitation on the day of collection, but 

received a larger amount of precipitation throughout the seven days prior to collection 

(Figure 4.36). May 9, 2016 also received a large amount of precipitation during the seven 

days prior to collection, while June 26, 2016 did not (Figure 4.36).  

Variable SPM concentrations could be attributed to the complex water exchange 

of the Weeks Bay estuary. Weeks Bay receives saline water from the Gulf of Mexico 

through Mobile Bay. Tides have been measured to produce current just inside the mouth 

of the bay of up to 40 cm/s, while in the narrow mouth, currents have been estimated to 

be as fast as 105 cm/s (Miller-Way et al., 1996). Freshwater input comes from both the 

Fish and Magnolia Rivers. The mean combined discharge of both rivers has been 

estimated at 9 m3/s, with 73% of the flow coming from the Fish River (Miller-Way et al., 

1996). East-West wind-stress influences the filling/emptying of Mobile Bay, and 

consequently the filling/emptying of Weeks Bay (Schroeder et al., 1986). River discharge 

into Weeks Bay tends to be flashy in nature, with individual flooding events (Miller-Way 

et al., 1996).   

5.3 SPM and SPIM Concentration Retrieval Algorithms 

5.3.1 Previously Developed Models 

Numerous models (Table 3.2) were selected to be evaluated in their performance 

of retrieving SPM/SPIM concentrations from reflectance values. Algorithms were 

selected from published research on other optically complex Case 2 waters that have been 

proven successful. Algorithms were evaluated using 48 sample sites, providing RMSEs 

ranging from 76.5% to 2131% for algorithms producing SPM concentrations, and 

66.96% to 2*1068 % for algorithms determining SPIM concentrations. None of the 
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algorithms produced significant results in their original forms (Table 4.3). Once the 

coefficients of the previously developed models were modified, performance was much 

better (Table 4.4). The previously developed models with altered coefficients produced 

RMSEs ranging from 31.66% to 33.97% for SPM retrieval algorithms, and 13.67% to 

36.87% for SPIM retrieval algorithms.  

The best modified SPM retrieval algorithm using Weeks Bay SPM and 

reflectance data was that of Zheng et al. (2015) as depicted in the following equation: 

 𝑆𝑃𝑀 = −317.27 ∗ 𝑥 + 46.524 (5.1) 

Where x is Band 5. While performing the best out of the attempted previously 

developed SPM algorithms, this model does not produce significant results. The reported 

RMSE was 31.66% (14.63 mg/L) and R2 was 0.0158. The best modified SPIM retrieval 

algorithm using Weeks Bay SPIM and reflectance data was that of Kong et al. (2015b) as 

depicted in the following equation: 

 𝑆𝑃𝐼𝑀 =  227.73 ∗  𝑥2  −  402.92 ∗  𝑥 +  188.4 (5.2) 

Where x is the ratio of Band 4/Band 3. The reported RMSE was 13.67% (1.74 

mg/L) and R2 was 0.5173. The published results for the SPIM algorithm by Kong et al. 

(2015b) reported an R2 of 0.9773 and a mean relative error of 25.35% for the Caofeidian 

coastal water dataset used to develop the model.  

5.3.2 Empirical SPM and SPIM Concentration Retrieval Algorithms 

Many possible reflectance parameters were analyzed as potential variables in both 

linear and nonlinear SPM and SPIM retrieval algorithms. The selection of the best 

retrieval algorithms was made by considering the R2, p-value, Pearson correlation 

coefficient (R), and the RMSE (%) of the estimate. The majority of the SPM retrieval 
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algorithms developed using the in situ data collected during the four field cruises resulted 

in insignificant p-values. All significant SPM retrieval algorithms include Band 3, or the 

green band, of Landsat-8.  

Differences in SPM concentrations between field cruises (Table 4.1) may have 

played a role in the minimal number of significant regressions with reflectance values. 

Similarly, variations in the composition, both inorganic and organic, may have influenced 

the regression as well. Weeks Bay may receive suspended sediment from the Fish and 

Magnolia Rivers, as well as from the Mobile Bay and through resuspension within Weeks 

Bay itself, causing this variation (Miller-Way et al., 1996).  

The best possible SPM retrieval algorithm developed for Weeks Bay is the third 

order polynomial utilizing the reflectance parameters (Band 3 – Band 5)/(Band 3 + Band 

5) as given in the following equation: 

 𝑆𝑃𝑀 =  −204473 ∗ 𝑥3  +  647570 ∗ 𝑥2  −  682964 ∗ 𝑥 +  239916 (5.3) 

Where SPM is the concentration of SPM measured in mg/L, and x is the 

combination of Landsat-8 Rrs values such that  

 X= (Band 3 – Band 5) 
(Band 3 + Band 5)⁄ . (5.4) 

Equation 5.3 is the only SPM retrieval algorithm developed for Weeks Bay with a 

significant p-value (p-value=0.0089), and Pearson correlation coefficient that may be 

considered strong, at least when rounded (R=0.7976). The reported RMSE is 17.65% 

(8.15 mg/L). However, this algorithm was developed by removing an outlier from both 

the development phase (May 9, 2016 Site 1) and the validation phase (May 9, 2016 Site 

2).  
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The reflectance parameter (Band 3 – Band 5)/(Band 3 + Band 5) is similar to what 

is referred to as the Normalized Differential Water Index (NDWI). The NDWI is 

calculated with the band combination of Equation 5.4, using TOA values. The NDWI 

maximizes reflectance of a water body through the use of the green band, and minimizes 

low reflectance in the NIR region (Ko, Kim, & Nam, 2015). 

Unlike with SPM, the majority of the SPIM retrieval algorithms developed using 

the in situ data collected during the four field cruises resulted in significant p-values. Out 

of the 29 reflectance parameters tested as possible predictive variables in a SPIM 

retrieval algorithm for Weeks Bay, 25 produced p-values of less than 0.05, and are 

therefore statistically significant. Merritt (2016) similarly found that SPIM, opposed to 

SPM, has a more significant relationship with reflectance values. Out of the 25 

statistically significant reflectance parameters, only three reflectance parameters 

produced both linear nonlinear algorithms with a Pearson correlation coefficient of 

greater than 0.8.  

The three reflectance parameters sensitive to SSCs all contain Landsat-8 Band 3, 

or the green band. Two of the reflectance parameters sensitive to SSCs contain Landsat-8 

Band 4, or the red band. The red portion of the EMS has been demonstrated to be the 

most sensitive of the visible portion to suspended sediment, and the least affected by 

organic material containing chlorophyll (Zhao, 2009). Because CDOM has a minimal 

influence at longer wavelengths, it is supposed that a SPIM algorithm may be more 

successful with the use of bands selected from the red region of the EMS (Binding et al., 

2005). In this study, the developed relationships with individual visible bands 

demonstrated the greatest proportion of explained variance (R2 value) in relation with 
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Landsat-8 Band 4 (Table 4.11). Many studies have demonstrated the effectiveness of 

using red and/or near-infrared band reflectance data to observe suspended sediment 

remotely (Chen et al., 2011; Han et al., 2006; Kaba et al., 2014; Miller et al., 2004; Zhao 

et al., 2011). While the red band was included in two of the significant retrieval 

algorithms the NIR band was only found to possess a strong relationship with the Weeks 

Bay in situ SPM/SPIM concentrations when the reflectance parameter (Band 3 – Band 

5)/(Band 3 + Band 5) was developed and validated without the use of May 9, 2016 Sites 

1 and 2.  

Zhang (2005) determined the strongest SSC retrieval algorithm for the Old 

Woman Creek estuary to utilize a ratio of the green and NIR band of Landsat-7. Similar 

to Zhang (2005), this study found the green band to be a stronger parameter for predicting 

both SPIM, as well as SPM. Unlike Zhang (2005), a combination of the green band with 

the red band is better suited for predicting the SPM/SPIM concentrations of Weeks Bay. 

Kong et al. (2015a), the best performing previously existing model with modified 

coefficients (R2=0.5173, RMSE=13.67%), similarly found the utilization of a 

combination of the red and green bands from a Landsat satellite to be the best predictor of 

SPIM. Kong et al. (2015a) used a ratio of the red and green band in a quadratic equation. 

Ritchie & Cooper (2001) report that suspended sediments between 0 to 50 mg/L 

will significantly relate to almost any wavelength, whereas higher ranges of suspended 

sediment between 0 to 200+ mg/L require a curvilinear relationship with longer 

wavelengths in order to be significant. Many studies have demonstrated that despite this 

claim, a curvilinear relationship might be necessary in lower ranges between 0 to 100+ 

mg/L as well (Zhao et al, 2011; Lobo et al., 2014; Kong et al., 2015a; Zheng et al., 2015).  
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Out of the six significant linear and nonlinear algorithms with a strong Pearson 

correlation coefficient, the best performing model was the third order polynomial 

equation utilizing Ln(Band 4)/Ln(Band 3) as the predictive variable as given in the 

following equation: 

  𝑆𝑃𝐼𝑀 = −84393 ∗ 𝑥3  +  266348 ∗ 𝑥2  −  279970 ∗ 𝑥 +  98029 (5.5) 

Where SPIM is the concentration of SPIM measured in mg/L, and x is the 

combination of Landsat-8 Rrs values such that  

 𝑥 =
𝐿𝑛(𝐵𝑎𝑛𝑑 4)

𝐿𝑛(𝐵𝑎𝑛𝑑 3)⁄ . (5.6) 

  This model resulted in the lowest RMSE (12.50% or 1.59 mg/L), and highest R2 

(R2=0.6504). The validation of Equation 5.5 with 16 sample sites using a paired t-test 

resulted in a p-value of greater than 0.05, allowing us to not reject the null that the 

predicted and in situ SPIM concentration means are statistically similar. In order to reject 

the null hypothesis that the modeled and in situ concentration means are statistically 

similar, the resultant p-value must be less than 0.05. Similarly, validation using an F-test 

resulted in a p-value of greater than 0.05, allowing us to not reject the null that the 

predicted and in situ SPIM concentration variances are statistically similar. As depicted 

in Figure 3.4, the modeled SPIM concentrations are strongly related to the measured field 

SPIM concentrations.   

While polynomial models have been reported by previous studies (Lodhi et al., 

1998; Kong et al., 2015a), there is the threat of overfitting the model and creating 

misleading R2, Pearson correlation coefficient, and p-values. An over fit model is too 

complicated for the given data set, accommodating itself to the random noise of the 

specific sample, rather than the general population (Frost, 2015). By using a separate 
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sample set for both the development and validation of the reported polynomial model, it 

has been the goal to avoid the thread of overfitting, but this cannot be guaranteed. Further 

testing of the model is necessary to detect this potential error. In the event that Equation 

5.5 is over fit to the noise of the specific sample set used, a linear model may more 

accurately determine SPIM concentrations from reflectance.  

Out of the three significant linear algorithms with a strong Pearson correlation 

coefficient, the best performing model was the equation utilizing Band 4/Band 3 as the 

predictive variable as given in the following equation: 

  𝑆𝑃𝐼𝑀 =  −20.644𝑥 +  30.374 (5.7) 

Where SPIM is the concentration of SPIM measured in mg/L, and x is the 

combination of Landsat-8 Rrs values such that  

 𝑥 = 𝐵𝑎𝑛𝑑 4
𝐵𝑎𝑛𝑑 3⁄ . (5.8) 

  This model resulted in the lowest RMSE (17.48% or 2.23 mg/L), and highest R2 

(R2=0.2619). The validation of Equation 5.7 with 16 sample sites using a paired t-test 

resulted in a p-value of greater than 0.05, allowing us to not reject the null that the 

predicted and in situ SPIM concentration means are statistically similar. Similarly, 

validation using an F-test resulted in a p-value of greater than 0.05, allowing us to not 

reject the null that the predicted and in situ SPIM concentration variances are statistically 

similar. As depicted in Figure 3.25, the modeled SPIM concentrations are strongly related 

to the measured field SPIM concentrations, although not as strongly related as when 

SPIM concentrations are predicted using the nonlinear model (Figure 3.26).   

Despite the significant p-values and Pearson correlation coefficients of the 

reported SPM/SPIM retrieval algorithms, none have R2 values that stand up to those of 
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the models published in the literature. Published SPM/SPIM retrieval algorithms 

typically report an R2 value of 0.75 or greater, as depicted in Table 3.2 containing the 

previously developed models evaluated in this study. The highest R2 value reported in 

this paper was for Equation 5.5 with a reported R2 of 0.6504.  

While SPIM concentration is the most important factor in impacting the 

reflectance of the sediment, the sediment particle size and composition has a strong 

influence as well (Kong et al., 2015a). Reflectance curves have been demonstrated to 

vary significantly for SPIM of different particle sizes, even with a constant concentration 

(Binding et al., 2005; Kong et al., 2015a). The complexity of the combined influence 

from both sediment concentration and particle size may explain the improved 

performance of a polynomial algorithm and justify the increased complexity of the 

equation.  

5.4 Rrs Simulation  

The Rrs simulation created for Weeks Bay presents modeled spectra curves that 

generally correspond with the spectra curves observed by the in situ radiometer data. 

While the spectra curves of the simulated Rrs reflect those observed by the radiometer, 

the magnitude of the simulated Rrs values tend to be lower than the radiometer values.  

By removing the absorption of NAP, Chl a, and PC from Equation 4.1 to obtain 

Equation 4.2, the Rrs of Weeks Bay without the presence of SPM was simulated. When 

the SPM OACs are removed, the Rrs curve increases in magnitude from the simulated 

total Rrs. This increase in reflectance is due to the total SPM concentration being made 

up of 71% SPOM, and only 29% SPIM. The organic component of SPM (SPOM) is 

made up primarily of phytoplankton, and therefore chlorophyll. Chlorophyll has a high 
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absorption in the red and blue portion of the EMS (Jenson, 2006). By removing the 

absorption of NAP alone from Equation 4.1 to obtain Equation 4.3, the simulated Rrs 

without the presence of SPIM was simulated. When SPIM=0, the Rrs values are larger 

than the simulated total Rrs values, although not as large as when SPM=0. This is due to 

the lack of absorption by the organic particulate matter. Additionally, when the Rrs of 

Weeks Bay is simulated without the presence of SPM by removing the effects of both 

organic and inorganic material, the trough around 670nm, that is visible in both the total 

Rrs, and the simulated Rrs without the presence of SPIM, is removed. This trough is 

caused by the absorption of organic material.  

To obtain the Rrs of SPM/SPIM alone, the Rrs values determined for 

SPM=0/SPIM=0 were subtracted from the total Rrs values. This was done using both the 

simulated total Rrs and radiometer Rrs values. The resultant Rrs values for SPIM are 

greater than those for SPM. This is theoretically due to the higher absorption of SPM due 

to the chlorophyll component. 

Variation between the numerous spectra curves depicting Rrs in relation to either 

SPM or SPIM is typically the greatest in the 550-650nm range, which includes the green 

`and red portion of the EMS. The red portion of the EMS is the most sensitive of the 

visible portion to suspended sediment, and the least affected by organic material 

containing chlorophyll (Zhao, 2009).  

Comparison of the computed total Rrs and in situ Rrs spectra curves validate the 

theory of OACs and their combined influence on the total reflectance observed by either 

the satellite or in situ radiometer. The computed Rrs spectra curves successfully 

approximate the majority of the observed spectra curves. Additionally, all computed Rrs 
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spectra curves match the standard reflectance spectra for clear and algae-laden waters 

depicted in Figure 5.3. A semi-analytical model utilizing the inherent optical properties 

investigated in this simulation was attempted, but failed to produce significant results.    
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CHAPTER VI 

CONCLUSION 

6.1 Retrieval Algorithms 

It was hypothesized that remote sensing reflectance (Rrs) may be used to estimate 

SPM and SPIM concentrations in the Weeks Bay estuary in Alabama. Previously 

developed bio-optical algorithms were evaluated using the field collected SPM, SPIM, 

and Rrs values. None of the previously developed algorithms resulted in significant R2 or 

RMSE (%) values. Once the previously developed algorithms were modified to include 

coefficients specific to the Weeks Bay data, only the modified SPM/SPIM algorithms 

produced significant relationships. All but one of the models previously developed SPIM 

algorithms with modified coefficients produced RMSE values of under 30%. R2 values 

ranged from 0.1563 to 0.5173. The best fit SPIM algorithm, taken from Kong et al. 

(2015a), produced an R2 of 0.5173 with an RMSE of 13.67% (1.74 mg/L) and a strong 

Pearson correlation coefficient of 0.90.  

In order to find an improved model with a higher R2 and lower RMSE (%), a 

series of reflectance parameters were related to SPM concentrations with regression 

techniques. The 29 tested reflectance parameters included single bands, band ratios, band 

combinations, natural logs of bands, and combinations of the previously listed. Through 

the analysis of these additional reflectance parameters, an algorithm utilizing the variable 

(Band 3 – Band 5)/ (Band 3 + Band 5) with a strong Pearson correlation coefficient 
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(R=0.80), low RMSE (17.65%), and moderate R2 (R2=0.4744) was found for determining 

SPM concentrations using Rrs. Through additional analysis of the reflectance parameters, 

numerous SPIM retrieval algorithms were found with a strong Person correlation 

coefficient (R>0.8), low RMSE (RMSE<20%), higher R2 (R2>0.19), and significant p-

value (p<0.05). A nonlinear cubic algorithm utilizing the reflectance parameter Ln(Band 

4)/Ln(Band 3) presents the lowest RMSE (12.50%), highest R2 (R2=0.6504), and a strong 

Pearson correlation coefficient. Additionally, a significant linear algorithm utilizing the 

reflectance parameter Band 4/Band 3 (RMSE= 17.48%, R2=0.2619, R=0.83) may be used 

to determine SPIM concentrations using Rrs. These algorithms support the initial 

hypothesis that Rrs values may be used to estimate SPM and SPIM concentrations in 

Weeks Bay.  

Weeks Bay is optically complex with varying proportions of inorganic and 

organic particulate matter, as well as variations in particle size, shape, and source, 

making the development of a SPM retrieval algorithm more difficult than a SPIM 

retrieval algorithm. A larger dataset may be needed to develop a stronger model for the 

retrieval of SPM in Weeks Bay.  

6.2 Research Limitations and Future Research 

This study faced a number of limitations that result in a number of possible future 

research studies. This study was unable to validate the proposed models through the 

application of the algorithms to Landsat-8 imagery of Weeks Bay. Once future research 

has validated the application of these algorithms to Landsat-8 imagery, future studies 

may download and atmospherically correct Landsat-8 imagery to obtain the Rrs values 

necessary to apply the proposed models. By applying the proposed models to Landsat-8 
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imagery, future research may monitor suspended sediment concentrations on a synoptic 

scale in Weeks Bay. Researchers may create sediment concentration maps for both future 

and historic Landsat-8 imagery, allowing for a number of questions on sediment transfer 

to be investigated. 

A primary limitation of this study was the limited size of the data set. In situ 

samples were collected on four separate sampling trips, with an average of only 12 

sample sites per trip. This greatly limited the number of sample sites able to be utilized in 

this study. Out of those four sampling trips, only one trip was able to occur on a clear sky 

day. Additional field sampling would allow for a better representation of SPM 

concentrations in order to further improve the SPM retrieval algorithm. It may be 

beneficial for additional sampling to range evenly over each season, in order to account 

for seasonal meteorological differences. Future research may investigate the influence of 

meteorological influences such as precipitation, wind speed, and wind direction. 

Future research may also further investigate modeling SPM concentrations based 

on the IOPs of the water body by creating a semi-analytical model that utilizes the 

breakdown of the optically active components. Due to the evident magnitude differences 

between the simulated and in situ Rrs values, it may be necessary to fine tune the 

processes used to estimate these OACs. Each OAC presents an additional potential 

source of error in the development of a semi-analytical model.  

6.3 Importance 

Excessive concentrations of suspended sediments and organic matter serves as a 

contaminant for estuarine ecosystems. SPM concentrations may be used as a proxy for 

other contaminants that adhere and are transported along with suspended sediments such 
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as insecticides, phosphorus, toxic metals, and pathogens. As an estuary, Weeks Bay 

creates critical habitats for a variety of wildlife including species of fish, mammals, 

amphibians, reptile, and birds. As a suburb of Mobile, Alabama, the watershed 

surrounding Weeks Bay is one of the fastest growing regions of Alabama due to 

increased suburbanization. Because of the increase in urban land cover, it is important to 

monitor the effects that this development is having on surface runoff, and the 

accumulation of sediments and other pollutants in Weeks Bay. The development of an 

SPM and SPIM retrieval algorithm will allow for the future monitoring of suspended 

sediment within the bay, as well as the ability to analyze historic changes since increased 

development began. Future research may download Landsat-8 imagery, both present and 

historical, and apply the model(s) presented in this thesis to obtain estimations on the 

SPM/SPIM concentrations present in Weeks Bay during the Landsat-8 overpass.  
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